
Creating an Extensible Semantic Web Framework for

Annotating Role Playing Game Logs

Robbe Van Herck
Student number: 01710097

Supervisor: Prof. dr. Pieter Colpaert

Counsellors: Patrick Hochstenbach, Andrei Popescu, Ruben Dedecker

Master's dissertation submitted in order to obtain the academic degree of

Master of Science in de informatica

Academic year 2021-2022

https://robbevanherck.be/
https://robbevanherck.be/
https://pietercolpaert.be/
https://pietercolpaert.be/
https://patrickhochstenbach.net/
https://patrickhochstenbach.net/
https://www.linkedin.com/in/andrei-popescu
https://www.linkedin.com/in/andrei-popescu
https://rubendedecker.be/
https://rubendedecker.be/

Permission for Usage
The author gives permission to make this master’s thesis available for consultation and

to copy parts of this master’s thesis for personal use. Every other use is subject to copy-
right terms, in particular with regard to the obligation to explicitly state the source when
quoting results from this master’s thesis.

Robbe Van Herck, 02/06/2022

Preface
This PDF version of the thesis was generated from the original HTML version at

https://thesis.robbevanherck.be. Some functions such as clickable links are not available in
the PDF version due to limitations of the conversion from HTML to PDF.

https://thesis.robbevanherck.be/
https://thesis.robbevanherck.be/

Acknowledgments
I want to thank my promotor, Pieter Colpaert and my counselors, Patrick Hochstenbach,

Andrei Popescu and Ruben Dedecker for guiding me through the process of creating a the-
sis and supporting me throughout the entire process. I also want to thank Harm Delva for
introducing the idea of using RPGs as a testbed for semantic web as a thesis-subject.

I want to thank Rien, Maxiem, Bastiaan, Dozens and Sammy for letting me use their sto-
ryline and characters to test the application, as well as the players in my campaigns that let
me use their characters as examples in the thesis itself, no matter how chaotic the storyline
may have been.

Next, I want to thank my family for giving me the opportunities to become the person I
am today and for always supporting me. Of course, I also need to thank my friends who
were always there to listen to my rants and helped me out when I needed it. A special
thank you goes out to Zeus WPI and Jonge Helden, who let me enjoy my passions to the
fullest and both contributed to my love for anything RPG-related.

Finally, I want to thank anyone that I forgot to thank, especially you, for taking the time to
read the final piece of my journey through university.

Summary
When playing a role playing game (RPG) using online tools, the problem often comes up

that these tools do not cooperate and that data has to be re-entered multiple times, causing
inconsistent and spread-out data. This is a problem that not only exists in the world of RPG
tools, but also on the world wide web as a whole. This thesis presents a proposal and proof
of concept for a system that allows RPG tools to work together in a way that provides new
possibilities that are not possible with the current set of tools.

More specifically, it will present a system that provides semantic tagging on the logs that
players create during a campaign by performing natural language processing on them. It
extracts which characters are referenced in a sentence and where using named entity
recognition (NER). By solving the problems that came up along the way, it allowed experi-
mentation with contained versions of real-world problems such as the variety of file formats.

In the end, the application was able to provide correct tagging for around 4000 pieces of
text extracted from 9 different campaigns at a speed of around 1 second per sentence. The
major bottleneck turned out to be automatic translation of texts, resulting in around 24% of
the texts translated incorrectly. However, in the ideal vision of the project, this step is less
relevant as the sentences would be inserted in the system directly instead of having to
process them all before being able to use them.

Samenvatting
Tijdens het spelen van een rollenspel (RPG) met online tools komt het probleem vaak

boven dat deze tools niet samenwerken en dat data vaak opnieuw ingegeven moet worden,
wat leidt tot inconsistente en verspreide data. Dit is een probleem dat niet enkel bestaat in
de wereld van RPG tools, maar ook in het web in zijn geheel. Deze thesis doet een voorstel
en proof of concept van een systeem dat het toelaat voor RPG tools om samen te werken
in een manier die nieuwe kansen brengt die niet mogelijk zijn met de huidige tools.

Meer specifiek, het stelt een systeem voor dat semantische tagging voorziet van logs die
gemaakt worden door spelers tijdens een spel door natural language processing erop uit te
voeren. Het extraheert welke personages werden vermeld en waar door gebruikt te maken
van named entity recognition (NER). Het oplossen van de problemen liet toe om te experi-
menteren met versies van problemen in de echte wereld, zoals de variëteit van verschil-
lende bestandsformaten.

Uiteindelijk was de applicatie in staat om een correcte tagging te geven van ongeveer
4000 stukken tekst van 9 verschillende verhaallijnen aan een snelheid van ongeveer 1 sec-
onde per tekst. Het grootste probleem bleek de automatische vertaling te zijn, die resul-
teerde in 24% verkeerd vertaalde teksten. In de ideale visie van het project zou deze stap
niet nodig zijn aangezien de teksten automatisch in het juiste formaat opgeslagen worden.

Vulgarizing Summary
Role playing games (RPGs) are a type of game where each player plays a certain char-

acter in the imaginary world of the game. All the players say what their character does and
how they interact. Together, they create a storyline where the characters go on adventures,
fight enemies and most of all, have fun. Often, there is one player that takes the role of the
game master (GM) who controls what happens in the world, such as what monsters they
encounter and what the non-player characters say and do. The GM can create challenges
for the players that they need to overcome. As the game is mostly imaginary, players can
come up with a virtually endless amount of ways to solve a problem. For example, if a char-
acter in the world needs eggs, the players can go look for chickens or eggs around the vil-
lage, but they can also choose to lay their own eggs. Whether or not this is allowed is de-
cided by the GM, often combined with the roll of a dice. The GM can ask the players to roll
a die to see if their action succeeds, the higher the roll, the better the action succeeds.

Often, the storyline of a game continues across many sessions to form a campaign. To
remember what happened in the sessions before, players often keep a log of the storyline
so far. There exist many different tools to keep these logs, both offline and online. Offline
tools are mostly text on paper, but some people choose to make drawings or doodles of
what happened. The online tools are what this thesis revolves around. Currently, each tool
has its own way of storing and processing the data and there is hardly any cooperation be-
tween tools. This thesis will create a system that helps the user make sense of their logs by
analyzing them and adding annotations that indicate what player is referenced in the text.
This allows them to, for example, easily search all the times a certain character is refer-
enced in the text.

The way the system was designed also makes the data available in a format that does
not just make sense to the program that created it, but it makes the data semantically
meaningful. It does this by using tools and standards from the semantic web, a vision for
the world wide web that makes the data on it not only accessible to the human reader, but
also to a computer system that wants to understand what is on it.

After extracting data from 9 different campaigns, the system proved to be reasonably
fast. It takes an average of around 1 second to fully analyze and tag a sentence, which is
fast enough for the intended design where the user types a text and it gets analyzed in the
background when they complete a paragraph. It proves that a system as proposed is possi-
ble and has the potential to become a whole new ecosystem of tools that all operate to-
gether to provide a better user experience.

Creating an Extensible Semantic Web Framework for

Annotating Role Playing Game Logs

ABSTRACT

Tools that allow playing role playing games online seldomly allow exchaging data
with other tools and services. is is a problem that exists on the broader web too, as web‐
sites keep users personal data in their own, separate data vaults. e semantic web provides
tools that mitigate this and build a web where data is semantically meaningful so both hu‐
mans and computers can understand and process it. is research presents the first steps to‐
wards a common system for RPG tools that builds on these technologies. More specifically, it
presents a system that uses named entity recognition to enhance player logs and provide the
first step to a new generation of tools that make the experience of playing RPGs online even
more enjoyable.

1. INTRODUCTION

Players of role-playing games (RPGs) have
recently had to change many of their games to
an online environment. Instead of physically
being at the same table in the same room, they
had to use tools to simulate maps, roll dice and
video chat to be able to see the other players.
While this has its advantages[1], it also
showed how lile these tools work together. A
character created in one tool is not available in
another tool and has to be recreated, leading
to scaered and non-synchronized data. is is
a typical symptom of what is called the Web
2.0, where each application keeps its own data
walled off in their own data vault. is makes
interoperability between different services
nearly impossible. As a response to this ten‐
dency, the semantic web or the Web 3.0 was
created that builds on standards that allow
data to be reused independently of where it
came from.

In this research, a system will be presented
that builds on the tools and standards of the
semantic web to provide analysis and semantic
enriching of the logs that players create while
playing RPG games. It performs named entity
recognition to extract and tag the references to
characters in these logs. Besides this, the sys‐
tem is also designed around the interoperabil‐
ity of different RPG tools by allowing them to
reuse the data from each step of the process.

Section 2 will show the NLP procedures that
are utilized. Section 3 will show an architec‐
tural overview of the application as a whole.
Section 4 will give some implementation de‐
tails and finally, Section 5 will show results
and draw conclusions.

2. NLP

is research mainly utilizes two tools from
the field of natural language processing to
achieve the goal of detecting and tagging char‐
acters in player logs. ese tools are con‐
stituency parsing and named entity recogni‐
tion.

2.1. Constituency Parsing

To find out what function each word has in
a sentence, constituency parsing is used. is
process turns a sentence into a tree where
each node represents a part of the sentence.
ese nodes have a label indicating the func‐
tion they serve in the sentence and their chil‐
dren represent a further subdivision of this
part of the sentence. For example, the sentence
“Maggie sees the castle”, becomes the con‐
stituency tree in Figure 1.

Robbe Van Herck , Prof. dr. Pieter Colpaert , Patrick Hochstenbach ,
Andrei Popescu , Ruben Dedecker

https://thesis.robbevanherck.be/#ref-eaen-1
https://thesis.robbevanherck.be/#ref-eaen-1
https://thesis.robbevanherck.be/#fig:eaen-constituency-tree
https://thesis.robbevanherck.be/#fig:eaen-constituency-tree
https://robbevanherck.be/
https://robbevanherck.be/
https://pietercolpaert.be/
https://pietercolpaert.be/
https://patrickhochstenbach.net/
https://patrickhochstenbach.net/
https://www.linkedin.com/in/andrei-popescu
https://www.linkedin.com/in/andrei-popescu
https://rubendedecker.be/
https://rubendedecker.be/

is allows the selection of only the rele‐
vant parts of a sentence when processing. For
example if only the verbs of a sentence are
needed, only the nodes with a label of “V” can
be extracted to get the required data. In a plain
sentence this is more difficult to do correctly.

2.2. Named Entity Recognition

Named entities are objects, locations, per‐
sons, etc that can be identified by a name. For
example in the sentence “Jeffrey sees Blub, his
pet goldfish”, “Jeffrey” and “Blub” are named
entities, as they refer to specific characters,
while “goldfish” is not, as that refers to a broad
group of entities.
e process of extracting these named enti‐

ties from a sentence is called named entity
recognition (NER) and can be done in many
different ways. is research uses constituency
trees. Instead of observing every single word
and matching it with the names of the entities,
it only matches the words that are labeled as a
noun or a noun phrase, which drastically re‐

duces the amount of words that need to be
checked.

Using this approach, it extracts references to
characters that exist in an RPG campaign. For
example, in the sentence from above, “Maggie
sees the castle”, the name of the character
Maggie appears, which the algorithm would
recognize as a proper noun and know it refer‐
ences the character named Maggie.

3. ARCHITECTURE

e basic architecture of the application is
shown in Figure 2. e five steps are “extract‐
ing text from files”, “extracting sentences from
text”, “parsing into constituency trees”, “ex‐
tracting characters with Solid data” and “re‐
constructing sentences”. Each step will be ex‐
plained in the next sections.

3.1. Extracting Text From Files

e first step is to process the existing log
files and extract the text they contain. is is
done to make sure all texts can be processed
independently of their original format. In an
ideal system, this step would not be necessary
as the data would be stored in the correct for‐
mat by the application that created the logs in
the first place.

3.2. Extracting Sentences From Text

With the pieces of text known, the next step
is spliing these up into sentences that can be
analyzed separately. By keeping a reference
from the newly split sentences to the text they
originated from, it is still possible to extract
context that would be lost if the sentences
were stored completely separately.

3.3. Parsing Into Constituency Trees

In this step, the sentences will be parsed
into constituency trees. Like in the previous
steps, this does not remove any data, but adds
data to the existing sentences and creates the
nodes that makes up the rest of the tree. is
step adds valuable metadata to each part of the
sentence, as it lets the system know what the
function of each part is, allowing more com‐

plex analyses.

Figure 1:

S

NP VP

PN

Maggie

V NP

sees

D N

the castle

Constituency tree of
the sentence “Maggie sees the
castle”. Each node in the tree
represents a part of the sentence
and its children represent a
further subdivision. e label on
the node indicates which
function that part of the text
serves.

https://thesis.robbevanherck.be/#fig:eaen-design-overview
https://thesis.robbevanherck.be/#fig:eaen-design-overview

3.4. Extracting Characters With Solid Data

is step consists of two parts, namely re‐
questing the data from a Solid pod and match‐
ing this to the data that was obtained in the
previous steps.

Extracting the data from the pod is done by
starting at the root of the pod and recursively
requesting the data it contains. is data is
stored in quads, which are triples with an ex‐
tra field indicating the knowledge graph or file
they came from originally.

Extracting the references to characters is
done by finding all the proper nouns and noun
phrases from all the currently analyzed con‐
stituency trees and finding the names of all the
characters. When a node that constitutes a
proper noun or noun phrase has the name of a
character as its value, we can assume that it
references that character and add the tag to
the data. It is important to not only look at
proper nouns, as names that consist of two
words such as “Lady Ghost” will be tagged as a
noun phrase.

3.5. Reconstructing Sentences

With the constituency trees and named en‐
tity tags known, we can reconstruct sentences

and texts into HTML. Using existing HTML
tags and RDFa, we can create a representation
that adds character metadata that people and
machines can understand. To make it human-
readable, the title aribute is used, that

shows an information popup when the user
hovers over the text. With this, the full name
of the character and the campaign they are
from can be shown. For example, the example
sentence from before will show “Maggie
(Pantheon Party)” when hovering over the
word “Maggie”. To make it machine-readable,
we use the RDFa tag resource with as value

the URI of the character.

4. IMPLEMENTATION

is section will go over the implementa‐
tion of the application. It first covers how the
player logs were acquired and processed and
then it will give an overview of how the appli‐
cation as a whole was designed. Finally, it will
also show how the services stored their data in
the database using existing ontologies.

4.1. Player Logs

e data that was used to test the applica‐
tion came from 9 different real campaigns,
which allowed testing the system with the

Figure 2:

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua. Ut

enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum.

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur.

Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum.

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur.

Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum.

1 2 3 4 5

(a)

(b)

Overview of the design of the application. First, the raw files get
transformed into pieces of text (1). en, the pieces of text get split into
sentences (2) which get parsed into constituency trees (3) and tagged with which
characters they reference (4b) with data from a Solid pod (4a). Finally, the
original texts are reconstructed in a semantically meaningful way (5).

difficulties that come with using real data.
While the owners of the campaign data did
give permission to use the data to test the ap‐
plication, permission to share or publish the
data was not asked, so the exact data and the
scripts to extract the texts will remain private.

Almost every campaign had a different way
to store the logs. Some of them used mark‐
down or markdown-based tools such as
Obsidian[2], while others used DokuWiki[3] or
a webblog hosted on their personal website.
e procedure of extracting text is similar for
each of the formats:

1. Strip all special characters such as links,
titles and markup.

2. Extract paragraphs from the plain text.

3. Store the paragraphs.

To achieve this, a Jupyter[4] notebook was
used for each campaign to query, process and
store the data. is allowed the data to be in‐
spected and verified manually without having
to recalculate the data every time.

Besides the format of the original files, a
common problem was the language of the
logs. As most of the logs came from Dutch-

speaking people, the logs were in Dutch as
well and had to be translated into English be‐
fore saving them. is resulted in some incor‐
rect translations and thus some lost data.
Finally, the logs were not always phrased in
full, correct sentences as keeping logs can be a
difficult process for players while simultane‐
ously playing the game. e application had to
be able to deal with these incorrectly phrased
sentences as well.

4.2. Framework

e basis of the system is the
Semantic.works[5] stack, which is a system
that is built around a central triplestore and al‐
lows many services to function as reasoners
on this triplestore that can read existing data
and add new data extracted from it. An over‐
view of all the services and how they interact
is shown in Figure 3. Some of the services al‐
ready existed and some had to be implemented
specifically for this research. e services that
were specifically implemented are sentence-
service, constituency-tree-service, solid-sync-
service and named-entity-recognition-service.
All services will be briefly explained below.

Figure 3:

identifier dispatcher

sentence-

service

mu-cl-

resources

solid-sync-

service

constituency-

tree-service

mu-

authorization
triplestoredelta-notifier

corenlp

named-entity-

recognition-

service

Overview of the application and its services. Each block represents a
service and an arrow indicates an interaction from one service to the other.
Requests from the frontend enter the system from the identifier.

https://thesis.robbevanherck.be/#ref-eaen-2
https://thesis.robbevanherck.be/#ref-eaen-2
https://thesis.robbevanherck.be/#ref-eaen-3
https://thesis.robbevanherck.be/#ref-eaen-3
https://thesis.robbevanherck.be/#ref-eaen-4
https://thesis.robbevanherck.be/#ref-eaen-4
https://thesis.robbevanherck.be/#ref-eaen-5
https://thesis.robbevanherck.be/#ref-eaen-5
https://thesis.robbevanherck.be/#fig:eaen-application-overview
https://thesis.robbevanherck.be/#fig:eaen-application-overview

IDENTIFIER

DISPATCHER

TRIPLESTORE

MU-AUTHORIZATION

DELTA-NOTIFIFIER

MU-CL-RESOURCES

SENTENCE-SERVICE

CONSTITUENCY-TREE-SERVICE

SOLID-SYNC-SERVICE

NAMED-ENTITY-RECOGNITION-
SERVICE

e identifier service takes re‐
quests from the frontend and identifies to
which session they belong. Mostly, this ses‐
sion corresponds to a browser tab the user
had open.

e dispatcher takes in the
request forwarded from the identifier and
checks which service the request should be
forwarded to. is allows the application to
have one shared entrypoint for all the ser‐
vices.

e central data storage is
the open source edition of OpenLink
Virtuoso[6] database. is database allows
storing triples in different graphs. It exposes
a SPARQL endpoint that services can inter‐
act with to read and write data.

is service adds a
layer of authorization to the database that
allows certain parts of the data to be only
readable or writable to certain user groups.

e delta-notifier noti‐
fies services of changes to the database.
Every time a change is made, the service
checks if any of the services are interested
in it and sends them the changes directly.

To allow frontend ap‐
plications to easily query the data without
having to use RDF directly, a mapping be‐
tween the RDF data and a JSON:API can be
created with this service.

Uses a function from
Pythons NLTK[7] library to split up all texts
in the database into sentences. It processes
new sentences immediately through the use
of the delta notifier.

Using a
separate docker container that runs
CoreNLP, this step pasres sentences into
constituency trees and adds them to the
database.

e Community
Solid Server has a feature that allows devel‐
opers to perform requests under the name
of a user without having to store the users
password. Instead, the service stores an au‐
thentication token and uses that to perform

authenticated requests. is service uses
these tokens to mirror the data of one Solid
pod in the database to allow easy querying
for the other services.

As both finding the names of the characters
and finding all nodes of a given type can be
done easily in SPARQL, this service uses a
single SPARQL query to perform the NER to
match the nodes to their characters.

4.3. Data Formats

To store texts, the type of iol:Text was

used, the value of the text was stored using the
rdf:value predicate. Sentences are stored as

a iol:Sentence and the value stored using

rdf:value as well. e link between texts

and sentences is dul:hasComponent.

For constituency trees, the type of
nif:String is added to the iol:Sentence

that was analyzed and nodes are stored using
the following predicates:

• nif:isString: Indicates the value of the

node.

• nif:posTag: e OLiA part of speech tag

this node has.

• nif:subString: Links the node to its

child nodes.

• nif:superString: Links the node to its

parent node.

• nif:beginIndex: e index in the parent

node where the value of this node starts.

• nif:endIndex: e index in the parent

node where the value of this node ends.

Finally, the links between nodes and charac‐
ters are stored using itsrdf:taIdentRef.

5. RESULTS & CONCLUSION

is section will show some timing results,
draw some conclusions and present the vision
on how the system can evolve in the future.
All timings were run on a laptop with 8GB
RAM and a Intel(R) Core(TM) i7-9750H CPU
@ 2.60GHz.
e 9 campaigns consisted of 62 files, which

resulted in 4138 pieces of text. Extracting sen‐
tences from these took 1 minute and resulted

https://thesis.robbevanherck.be/#ref-eaen-6
https://thesis.robbevanherck.be/#ref-eaen-6
https://thesis.robbevanherck.be/#ref-eaen-7
https://thesis.robbevanherck.be/#ref-eaen-7

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

in 8212 sentences, an average speed of 69 sen‐
tences per second. e constituency parsing of
these took 1 hour and 11 minutes and resulted
in 228055 nodes, an average speed of 1.83 sen‐
tences or 54 nodes per second. 399 sentences
were not able to be parsed due to various rea‐
sons. Mirroring the data from a Solid pod took
52 seconds, aer which the NER took only 8
seconds. is brings the total processing time
to 1 hour and 13 minutes, which is an average
of 1.06 seconds per piece of text. In a situation
where these texts would be analyzed immedi‐
ately aer they are wrien, this is an accept‐
able wait time before geing results.

Besides the numerical results, this research
also showed that it is possible to enhance the
data produced by RPG players in a semanti‐
cally meaningful way by using data that is it‐
self semantically meaningful. It showed that
using a shared understanding of the data al‐
lows services to cooperate in a way that is cur‐
rently not available for RPG tools.

In the future, the system presented here
could be expanded to become a new ecosystem
for all RPG related tools. ese tools could in‐
clude an editor that provides real-time seman‐
tic tagging of the logs produced by the player
or a system that uses VerbNet[8] matching on
the constituency trees to provide event extrac‐
tion or automatic summarization[9] of sessions
and campaigns. In theory, every single tool
that exists in the current ecosystem could be

ported or recreated for this new system, pro‐
viding possibilities and opportunities that are
impossible with the current tools.

BIBLIOGRAPHY

P. Eisenman and A. Bernstein, “Bridging the
Isolation: Online Dungeons and Dragons as
Group erapy during the COVID-19
Pandemic.” Available: hps://www.csac-vt.org
/who_we_are/csac-blog.html/article/2021/03
/31/bridging-the-isolation-online-dungeons-
and-dragons-as-group-therapy-during-the-
covid-19-pandemic
“Obsidian.” Available: hps://obsidian.md/
“Dokuwiki [DokuWiki].” Available:
hps://www.dokuwiki.org/dokuwiki
“Project Jupyter.” Available: hps://jupyter.org
A. Versteden and E. Pauwels, “State-of-the-art
Web Applications using Microservices and
Linked Data,” Zenodo, Apr. 27, 2016. doi:
10.5281/zenodo.1233427.
“OpenLink Soware: Virtuoso Homepage.”
Available: hps://virtuoso.openlinksw.com/
“NLTK :: Natural Language Toolkit.” Available:
hps://www.nltk.org/
M. Green, O. Hargraves, C. Bonial, J. Chen, L.
Clark, and M. Palmer, “VerbNet/OntoNotes-
Based Sense Annotation,” in Handbook of
Linguistic Annotation, N. Ide and J.
Pustejovsky, Eds. Springer Netherlands, 2017,
pp. 719–735. doi:
10.1007/978-94-024-0881-2_26.
X. Han, T. Lv, Z. Hu, X. Wang, and C. Wang,
“Text Summarization Using FrameNet-Based
Semantic Graph Model,” Scientific
Programming, vol. 2016, pp. 1–10, Jan. 2016,
doi: 10.1155/2016/5130603.

https://thesis.robbevanherck.be/#ref-eaen-8
https://thesis.robbevanherck.be/#ref-eaen-8
https://thesis.robbevanherck.be/#ref-eaen-9
https://thesis.robbevanherck.be/#ref-eaen-9
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://obsidian.md/
https://obsidian.md/
https://www.dokuwiki.org/dokuwiki
https://www.dokuwiki.org/dokuwiki
https://jupyter.org/
https://jupyter.org/
https://virtuoso.openlinksw.com/
https://virtuoso.openlinksw.com/
https://www.nltk.org/
https://www.nltk.org/

Een Uitbreidbaar Semantisch Web Framework voor de

Annotatie van Rolspellogs

ABSTRACT

Applicaties die het toelaten om online rollenspellen te spelen laten zelden toe dat data
uitgewisseld kan worden met andere applicaties. Dit is een probleem dat ook bestaat op het
bredere web, waar websites de data van gebruikers in hun eigen, afgesloten data-kluizen
steken. Het semantisch web voorziet middelen die dit tegengaan en bouwt een web waarbij
zowel mensen als computers de data begrijpen en kunnen verwerken. Dit onderzoek toont
de eerste stappen richting een gemeenschappelijk systeem voor RPG-applicaties dat op deze
technologieën bouwt en de eerste stap voorziet richting een nieuwe generatie applicaties die
het online spelen van RPGs nog aangenamer maken.

1. INTRODUCTIE

Spelers van rollenspellen (RPGs) hebben re‐
cent hun manier van spelen moeten aanpassen
naar een online omgeving. In plaats van fysiek
aan dezelfde tafel te zien in dezelfde ruimte,
moesten ze applicaties gebruiken om kaarten
te simuleren, dobbelstenen te rollen en
videochaen om andere spelers te kunnen
zien. Hoewel dit voordelen hee[1] toonde het
ook aan hoe weinig deze applicaties samen‐
werken. Een personage dat gemaakt is in een
applicatie is niet beschikbaar in een andere ap‐
plicatie en moet opnieuw gemaakt worden,
wat leidt tot versnipperde en niet-
gesynchroniseerde data. Dit is een typisch
symptoom van het Web 2.0, waar elke appli‐
catie zijn eigen data afgesloten houdt in een
data-kluis. Dit maakt interoperabiliteit tussen
verschillende applicaties bijna onmogelijk. Als
reactie op deze tendens werd het semantisch
web of het Web 3.0 gecreëerd dat bouwt op
standaarden die het toelaten om data te herge‐
bruiken onaankelijk van waar het kwam.

In dit onderzoek wordt een systeem
voorgesteld dat bouwt op de tools en standaar‐
den van het semantisch web om een analyse
en semantische verrijking te maken van de
logs die een speler maakt tijdens het spelen
van een RPG spel. Het gebruikt named entity
recognition (NER) om referenties naar person‐
ages te verkrijgen uit deze logs. Daarnaast is
het systeem ook ontworpen rond interoper‐

abiliteit van verschillende RPG applicaties
door hen toe te laten de data van elke stap in
het proces te hergebruiken.

Sectie 2 toont een overzicht van de NLP
procedures die gebruikt worden. Sectie 3 zal
een architecturaal overzicht geven van de ap‐
plicatie in zijn geheel. Sectie 4 gee implemen‐
tatiedetails en tensloe zal Sectie 5 resultaten
tonen en conclusies trekken.

2. NLP

Dit onderzoek gebruikt voornamelijk twee
tools uit de natural lanuage processing (NLP)
om zijn doel van het detecteren en labelen van
personages in de speler-logs te bereiken. Deze
tools zijn constituency parsing en named en‐
tity recognition.

2.1. Constituency Parsing

Om te ontdekken welke functie elk woord
hee in een zin wordt constituency parsing
gebruikt. Dit proces vormt een zin om in een
boom waar elke knoop een deel van de zin
voorstelt. Deze knopen hebben ook een label
dat aanduidt welke functie ze hebben in de zin
en de kinderen stellen een verdere on‐
derverdeling van dit stuk van de zin voor.
Bijvoorbeeld, de zin “Maggie sees the castle”
wordt de constituency tree in Figure 4.

Robbe Van Herck , Prof. dr. Pieter Colpaert , Patrick Hochstenbach ,
Andrei Popescu , Ruben Dedecker

https://thesis.robbevanherck.be/#ref-eanl-1
https://thesis.robbevanherck.be/#ref-eanl-1
https://thesis.robbevanherck.be/#fig:eanl-constituency-tree
https://thesis.robbevanherck.be/#fig:eanl-constituency-tree
https://robbevanherck.be/
https://robbevanherck.be/
https://pietercolpaert.be/
https://pietercolpaert.be/
https://patrickhochstenbach.net/
https://patrickhochstenbach.net/
https://www.linkedin.com/in/andrei-popescu
https://www.linkedin.com/in/andrei-popescu
https://rubendedecker.be/
https://rubendedecker.be/

Dit laat toe om enkel de relevante delen van
een zin te selecteren om te verwerken.
Bijvoorbeeld wanneer enkel de werkwoorden
van een zin nodig zijn kunnen de knopen met
een label “V” (verb) geselecteerd worden om
de vereiste data te verkrijgen. In een gewone
zin is dit moeilijker om correct te doen.

2.2. Named Entity Recognition

Named entities zijn objecten, locaties, per‐
sonen, enz. die geïdentificeerd kunnen worden
met een naam. Bijvoorbeeld in de zin “Jeffrey
ziet Blub, zijn goudvis” zijn “Jeffrey” en “Blub”
named entities omdat ze verwijzen naar een
specifiek personage, maar “goudvis” niet om‐

dat het verwijst naar een brede groep en‐
titeiten.

Het proces om deze named entities te vin‐
den in een zin heet named entity recognition
(NER) en kan op veel manieren gedaan wor‐
den. Dit onderzoek gebruikt constituency
trees. In plaats van elk woord te bekijken en
het af te toetsen aan de namen van de person‐
ages, neemt het enkel de woorden die gelabeld
zijn als een eigennaam of een “noun phrase”

(woordgroep die de functie van een zelfstandig
naamwoord neemt), wat het aantal woorden
dat bekeken moet worden drastisch verlaagt.

Bijvoorbeeld in de zin boven, “Maggie sees
the castle”, komt de naam van het personage
Maggie voor, wat het algoritme herkent als
een eigennaam en weet dat het woord verwijst
naar het personage met de naam Maggie.

3. ARCHITECTUUR

De architectuur van de applicatie is te zien
in Figure 5. De vijf stappen zijn “tekst verkrij‐
gen uit bestanden”, “zinnen verkrijgen uit
tekst”, “constituency parsing”, “personages
verkrijgen met Solid data” en “zinnen recon‐
strueren”. Elke stap wordt uitgelegd in de vol‐
gende subsecties.

3.1. Tekst Verkrijgen Uit Bestanden

De eerste stap is het verwerken van de
bestaande logbestanden en het verkrijgen van
de tekst die ze bevaen. Dit is gedaan om
zeker te zijn dat alle teksten verwerkt kunnen
worden, onaankelijk van in welk formaat ze
origineel opgeslagen waren. In een ideaal sys‐
teem is deze stap niet noodzakelijk omdat de
data in het juiste formaat opgeslagen wordt
door de applicatie de logs creëert in de eerste
plaats.

3.2. Zinnen Verkrijgen Uit Tekst

Met de tekst bekend is de volgende stap het
splitsen van deze teksten in zinnen die apart
verwerkt kunnen worden. Door een referentie
te houden van de nieuwe gesplitste zinnen
naar de tekst waar ze vandaan komen is het
nog steeds mogelijk om context te verkrijgen
die verloren zou gaan als de zinnen volledig
apart opgeslagen werden.

3.3. Ontleden In Constituency Trees

In deze stap worden de zinnen ontleed in
constituency trees. Net zoals in de vorige stap
verwijdert dit geen data maar voegt het enkel
data toe aan de bestaande zinnen en creëert
het de knopen die de rest van de boom om‐

vaen. Deze stap voegt kostbare metadata toe
aan elk stuk van de zin, aangezien het het sys‐
teem laat weten welke functie elk stuk hee,
wat complexere analyses toelaat.

Figure 4:

S

NP VP

PN

Maggie

V NP

sees

D N

the castle

Constituency tree van
de zin “Maggie sees the castle”.
Elke knoop in de boom stelt een
deel van de zin voor en zijn
kinderen stellen een
onderverdeling van dat stuk van
de zin voor. Het label van de
knoop gee aan welke functie
dat stuk van de zin hee in de
volledige zin.

https://thesis.robbevanherck.be/#fig:eanl-design-overview
https://thesis.robbevanherck.be/#fig:eanl-design-overview

3.4. Personages Verkrijgen Met Solid Data

Deze stap bestaat uit twee delen, namelijk
het opvragen van de data van een Solid pod en
dit aoetsen aan de data die verzameld is in de
vorige stappen.

Het verkrijgen van de data uit de pod is
gedaan door te beginnen in de bovenste con‐
tainer van de pod en recursief alle data die het
bevat op te vragen. Deze data wordt opgesla‐
gen in quads, wat triples zijn met een extra
veld dat aangee van welke knowledge graph
of bestand ze origineel aomstig zijn.

Het verkrijgen van de referenties naar per‐
sonages wordt gedaan door alle eigennamen
en “noun phrases” op te vragen uit de
bestaande constituency trees en de namen van
alle personages op te zoeken. Wanneer een
knoop die een eigennaam of een “noun
phrase” voorstelt als waarde de naam van een
personage hee, kunnen we ervan uit gaan dat
het verwijst naar dat personage en taggen we
de data ermee. Het is belangrijk om niet enkel
naar knopen met als label eigennamen te ki‐
jken, aangezien het kan zijn dat namen uit
meerdere woorden bestaan, zoals “Lady
Ghost”, wat als label “noun phrase” zou krij‐

gen.

3.5. Zinnen Reconstrueren

Met de constituency trees en named entity
labels bekend kunnen we de zinnen en teksten
reconstrueren naar HTML. Door gebruik te
maken van bestaande HTML tags en RDFa,
kunnen we een voorstelling maken dat
personage-metadata toevoegt op een manier
die zowel mensen als machines kunnen ver‐
staan. Om het leesbaar te maken voor mensen
gebruiken we het title aribuut, dat een

informatie-popup toont als een gebruiker hov‐
ert over de tekst. Hiermee kunnen we de naam
van het personage en de verhaallijn waar ze
uit komen tonen. Bijvoorbeeld in de voor‐
beeldzin van eerder, zal “Maggie (Pantheon
Party)” getoond worden wanneer er over het
woord “Maggie” gehoverd wordt. Om het lees‐
baar te maken voor machines voegen we de
RDFa tag resource toe met als waarde de

URI van het personage.

4. IMPLEMENTATIE

Deze sectie gaat over de implementatie van
de applicatie. Eerst toont het hoe de spelerlogs
verzameld en verwerkt waren en daarna gee

Figure 5:

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua. Ut

enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum.

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur.

Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum.

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur.

Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum.

1 2 3 4 5

(a)

(b)

Overzicht van het ontwerp van de applicatie. Eerst wordt de ruwe data
omgezet naar stukken tekst (1). Daarna worden de stukken tekst opgesplitst in
zinnen (2) die ontleed worden in constituency trees (3) en getagd met welke
peronages ze naar verwijzen (4b) met data uit een Solid pod (4a). Tot slot worden
de originele teksten gereconstrueerd in een semantisch betekenisvolle manier
(5).

het een overzicht van hoe de applicatie in zijn
geheel was ontworpen. Tot slot toont het ook
hoe de services hun data opslaan in de data‐
base door gebruik te maken van bestaande on‐
tologieën.

4.1. Spelerlogs

De data die gebruikt werd om het systeem
te testen kwam van 9 verschillende echte ver‐
haallijnen, wat toeliet om het systeem te
testen met de moeilijkheden die komen bij het
gebruik van echte data. Hoewel de eigenaars
van de verhaallijnen toestemming hebben
gegeven om de data te gebruiken om de appli‐
catie te testen, was er geen toestemming
gevraagd om de data te publiceren, dus de data
en scripts om de teksten te verkrijgen worden
niet publiek gemaakt.

Bijna elke GM had een verschillende manier
om hun logs bij te houden. Sommigen gebruik‐
ten markdown of een markdowgn-gebaseerde
tool zoals Obsidian[2] terwijl anderen
DokuWiki[3] of een eigen webblog gebruikten.
De procedure om de teksten te verkrijgen is

gelijkaardig voor elk formaat:
1. Verwijder alle speciale karakters zoals
links, titels en opmaak.

2. Haal de paragrafen uit de tekst.

3. Sla de paragrafen op.

Om dit te doen werd voor elke verhaallijn
een Jupyter[4] notebook gebruikt om de data
op te vragen, te verwerken en op te slaan. Op
deze manier is het mogelijk om de data hand‐
matig te inspecteren en verifiëren zonder de
data te moeten herberekenen.

Naast het formaat van de originele be‐
standen was een vaak voorkomend probleem
dat de meeste logs in het Nederlands
geschreven waren en dus eerst vertaald
moesten worden voor ze konden opgeslagen
worden. Dit resulteerde soms in foute vertalin‐
gen en dus verloren data. Tot slot waren de
logs ook niet altijd geformuleerd in volledige,
correcte zinnen aangezien het moeilijk is voor
spelers om logs bij te houden tijdens een spel.
De applicatie moest hier ook mee om kunnen.

4.2. Framework

De basis van het systeem is

Semantic.works[5], een systeem dat gebouwd
is rond een centrale triplestore en toelaat voor
services om te functioneren als reasoner op

Figure 6:

identifier dispatcher

sentence-

service

mu-cl-

resources

solid-sync-

service

constituency-

tree-service

mu-

authorization
triplestoredelta-notifier

corenlp

named-entity-

recognition-

service

Overzicht van de services in de applicatie. Elk blok stelt een applicatie
voor en een pijl stelt een interactie tussen twee services voor. Requests van de
frontend komen binnen bij de identifier.

https://thesis.robbevanherck.be/#ref-eanl-2
https://thesis.robbevanherck.be/#ref-eanl-2
https://thesis.robbevanherck.be/#ref-eanl-3
https://thesis.robbevanherck.be/#ref-eanl-3
https://thesis.robbevanherck.be/#ref-eanl-4
https://thesis.robbevanherck.be/#ref-eanl-4
https://thesis.robbevanherck.be/#ref-eanl-5
https://thesis.robbevanherck.be/#ref-eanl-5

IDENTIFIER

DISPATCHER

TRIPLESTORE

MU-AUTHORIZATION

DELTA-NOTIFIFIER

MU-CL-RESOURCES

SENTENCE-SERVICE

CONSTITUENCY-TREE-SERVICE

SOLID-SYNC-SERVICE

NAMED-ENTITY-RECOGNITION-
SERVICE

deze triplestore en zo bestaande data kunnen
lezen en nieuwe data toe kunnen voegen. Een
overzicht van alle services en hoe ze inter‐
ageren is getoond in Figure 6. Sommige servies
bestonden al en anderen moesten specifiek
voor dit onderzoek geïmplementeerd worden.
De services die specifiek geïmplementeerd
waren zijn sentence-service, constituency-
tree-service, solid-sync-service en named-
entity-recognition-service. Alle services wor‐
den kort uitgelegd hieronder.

De identifier service neemt re‐
quests van de frontend en identificeert tot
welke sessie ze behoren. Meestal komt dit
overeen met het tabblad dat de gebruiker
open hee

De dispatcher neemt de re‐
quest die doorgestuurd werd door de identi‐
fier en kijkt naar welke service de request
doorgestuurd moet worden. Op deze manier
kan een applicatie één entrypoint hebben
voor alle services.

De centrale database is de
open source editie van OpenLink
Virtuoso[6]. Deze database laat het toe om
triples in verschillende grafen op te slaan.
Het hee een SPARQL endpoint dat services
mee kunnen interageren om data te lezen en
schrijven.

Deze service voegt
een laag autorisatie toe aan de database die
toelaat om bepaalde delen van de data enkel
leesbaar of schrijaar te maken voor
bepaalde gebruikersgroepen.

De delta-notifier ver‐
wiigt services wanneer er een wijziging
aan de database is. Elke keer een verander‐
ing is doorgevoerd, kijkt de service of een
van de services geïnteresseerd is in de wi‐
jziging en stuurt het de wijziging naar de
service.

Om frontendappli‐
caties toe te laten om gemakkelijk de data
op te vragen zonder rechtstreeks RDF te
moeten gebruiken kan een omzeing van
RDF data naar JSON:API en vice versa
gemaakt worden met deze service.

Gebruikt een functie

uit Python's NLTK[7] library om de teksten
in de database op te splitsen in zinnen. Het
verwerkt alle teksten wanneer ze toekomen
met behulp van de delta-notifier.

Met be‐
hulp van een aparte docker container die
CoreNLP draait, ontleedt deze stap zinnen
naar constituency trees en voegt ze toe aan
de database.

De Community
Solid Server[8] hee een functie die het toe‐
laat voor ontwikkelaars om requests te
sturen in naam van een gebruiker zonder
het wachtwoord van de gebruiker te moeten
opslaan. In plaats daarvan gebruikt de ser‐
vice een authenticatie-token en gebruikt
deze om geauthenticeerde requests te
maken. Deze service kopiëert de data van
een Solid pod naar de database om het toe te
laten om gemakkelijker te bevragen en ver‐
werken.

Aangezien zowel het vinden van de namen
van de personages als het vinden van alle
knopen met een gegeven typen gemakkelijk
gedaan kan worden in SPARQL, gebruikt
deze service een SPARQL query om de NER
uit te voeren.

4.3. Data Formats

Om teksten op te slaan werd het type
iol:Text gebruikt, de waarde van de tekst

werd opgeslagen met het predicaat
rdf:value. Zinnen werden opgeslagen als

een iol:Sentence en de waarde met

rdf:value. De link tussen teksten en zinnen

is dul:hasComponent.

Voor constituency trees werd het type
nif:String toegevoegd aan de

iol:Sentence waar het vandaan komt en

de knopen worden opgeslagen met volgende
predicaten:

• nif:isString: Gee de waarde van de

knoop aan.

• nif:posTag: Het OLiA label deze knoop

hee.

• nif:subString: Linkt een knoop aan zijn

https://thesis.robbevanherck.be/#fig:eanl-application-overview
https://thesis.robbevanherck.be/#fig:eanl-application-overview
https://thesis.robbevanherck.be/#ref-eanl-6
https://thesis.robbevanherck.be/#ref-eanl-6
https://thesis.robbevanherck.be/#ref-eanl-7
https://thesis.robbevanherck.be/#ref-eanl-7
https://thesis.robbevanherck.be/#ref-eanl-8
https://thesis.robbevanherck.be/#ref-eanl-8

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

kinder-knopen.

• nif:superString: Linkt een knoop aan

zijn ouder-knoop.

• nif:beginIndex: De index in de ouder-

knoop waar de waarde van deze knoop be‐
gint.

• nif:endIndex: De index in de ouder-

knoop waar de waarde van deze knoop
eindigt.

Tot slot, de link tussen knoop en het person‐
age waar het naar verwijst werd opgeslagen
met itsrdf:taIdentRef.

5. RESULTAAT & CONCLUSIE

Deze sectie zal wat resultaten geven, hier
conclusies uit trekken en de visie geven van
hoe het systeem kan evolueren in de toekomst.
Alle tijden zijn gemeten op een laptop met
8GB RAM en een Intel(R) Core(TM) i7-9750H
CPU @ 2.60GHz.

De 9 verhaallijnen bestonden uit 62 be‐
standen, wat resulteerde in 4138 stukken tekst.
Het verkrijgen van zinnen hieruit duurde 1
minuut en resulteerde in 8212 zinnen, wat
gemiddeld 69 zinnen per seconde is. Het op‐
stellen van de constituency trees duurde 1 uur
en 11 minuten en resulteerde in 228055
knopen, een gemiddelde van 1.83 zinnen of 54
knopen per seconde. Het kopiëren van de Solid
data duurde 52 seconden, waarna de NER 8
seconden duurde. Dit brengt het totaal op 1
uur en 13 minuten, wat gemiddeld 1.06 secon‐
den is per tekst. In een situatie waar deze tek‐
sten onmiddelijk verwerkt worden nadat ze
geschreven worden is dit een redelijke wach‐
ijd, zeker aangezien de berekeningen in de
achtergrond kunnen gebeuren.

Naast de numerieke resultaten hee dit on‐
derzoek ook aangetoond dat het mogelijk is
om de data geproduceerd door RPG spelers op
een semantische manier te verbeteren door
data te gebruiken die inherent semantische
betekenis hee. Het hee aangetoond dat een
gedeeld begrip van de data toelaat dat services
samenwerken in een manier die op dit mo‐

ment niet mogelijk is met bestaande RPG
tools.

In de toekomst kan het systeem uitbreid
worden om een nieuw ecosysteem te worden
voor alle RPG gerelateerde tools. Deze tools
zijn dingen als een editor die in live semantis‐
che tagging voorziet van de logs of een sys‐
teem dat VerbNet[9] gebruikt voor
gebeurtenis-extractie of automatische samen‐
vaing van sessies[10]. In theorie zou elke
bestaande tool in het ecosysteem geïntegreerd
kunnen worden, wat mogelijkheden en kansen
met zich meebrengt die op dit moment onmo‐
gelijk zijn met de bestaande tools.

BIBLIOGRAFIE

P. Eisenman and A. Bernstein, “Bridging the
Isolation: Online Dungeons and Dragons as
Group erapy during the COVID-19
Pandemic.” Available: hps://www.csac-vt.org
/who_we_are/csac-blog.html/article/2021/03
/31/bridging-the-isolation-online-dungeons-
and-dragons-as-group-therapy-during-the-
covid-19-pandemic
“Obsidian.” Available: hps://obsidian.md/
“Dokuwiki [DokuWiki].” Available:
hps://www.dokuwiki.org/dokuwiki
“Project Jupyter.” Available: hps://jupyter.org
A. Versteden and E. Pauwels, “State-of-the-art
Web Applications using Microservices and
Linked Data,” Zenodo, Apr. 27, 2016. doi:
10.5281/zenodo.1233427.
“OpenLink Soware: Virtuoso Homepage.”
Available: hps://virtuoso.openlinksw.com/
“NLTK :: Natural Language Toolkit.” Available:
hps://www.nltk.org/

“CommunitySolidServer/CommunitySolidServer:
An Open and Modular Implementation of the
Solid Specifications.” Available:
hps://github.com/CommunitySolidServer
/CommunitySolidServer
M. Green, O. Hargraves, C. Bonial, J. Chen, L.
Clark, and M. Palmer, “VerbNet/OntoNotes-
Based Sense Annotation,” in Handbook of
Linguistic Annotation, N. Ide and J.
Pustejovsky, Eds. Springer Netherlands, 2017,
pp. 719–735. doi:
10.1007/978-94-024-0881-2_26.
X. Han, T. Lv, Z. Hu, X. Wang, and C. Wang,
“Text Summarization Using FrameNet-Based
Semantic Graph Model,” Scientific
Programming, vol. 2016, pp. 1–10, Jan. 2016,
doi: 10.1155/2016/5130603.

https://thesis.robbevanherck.be/#ref-eanl-9
https://thesis.robbevanherck.be/#ref-eanl-9
https://thesis.robbevanherck.be/#ref-eanl-10
https://thesis.robbevanherck.be/#ref-eanl-10
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://www.csac-vt.org/who_we_are/csac-blog.html/article/2021/03/31/bridging-the-isolation-online-dungeons-and-dragons-as-group-therapy-during-the-covid-19-pandemic
https://obsidian.md/
https://obsidian.md/
https://www.dokuwiki.org/dokuwiki
https://www.dokuwiki.org/dokuwiki
https://jupyter.org/
https://jupyter.org/
https://virtuoso.openlinksw.com/
https://virtuoso.openlinksw.com/
https://www.nltk.org/
https://www.nltk.org/
https://github.com/CommunitySolidServer/CommunitySolidServer
https://github.com/CommunitySolidServer/CommunitySolidServer
https://github.com/CommunitySolidServer/CommunitySolidServer
https://github.com/CommunitySolidServer/CommunitySolidServer

Table of Contents
1 Introduction
2 Literature Review

2.1 NLP on the Semantic Web
2.2 RPG on the Semantic Web

3 Semantic Web Technologies
3.1 Linked Data
3.2 RDF
3.3 Knowledge Graphs
3.4 Turtle
3.5 HTML + RDFa
3.6 SPARQL

3.6.1 Querying
3.6.2 Adding data

3.7 Solid
4 NLP

4.1 Constituency Parsing
4.2 Named Entity Recognition

5 Architecture
5.1 Extracting Text From Files
5.2 Splitting Text Into Sentences
5.3 Constituency Tree Parsing
5.4 Recognizing Entities using Solid Data

5.4.1 Getting Solid Data
5.4.2 Recognizing Entities

5.5 Reconstructing Sentences With Metadata
6 Implementation

6.1 Data
6.1.1 Format
6.1.2 Language
6.1.3 Phrasing

6.2 Semantic.works
6.2.1 Semantic.works middleware
6.2.2 Provided services

6.3 Sentence service
6.4 Constituency Tree Service
6.5 Solid Sync Service

6.5.1 app.js
6.5.2 solid.js
6.5.3 sparql.js

6.6 Named Entity Recognition Service
7 Results

7.1 Configuration

https://thesis.robbevanherck.be/#h1:introduction/introduction
https://thesis.robbevanherck.be/#h1:introduction/introduction
https://thesis.robbevanherck.be/#h1:literature-review/literature-review
https://thesis.robbevanherck.be/#h1:literature-review/literature-review
https://thesis.robbevanherck.be/#h2:literature-review/nlp-on-the-semantic-web
https://thesis.robbevanherck.be/#h2:literature-review/nlp-on-the-semantic-web
https://thesis.robbevanherck.be/#h2:literature-review/nlp-on-the-semantic-web
https://thesis.robbevanherck.be/#h2:literature-review/nlp-on-the-semantic-web
https://thesis.robbevanherck.be/#h2:literature-review/nlp-on-the-semantic-web
https://thesis.robbevanherck.be/#h2:literature-review/rpg-on-the-semantic-web
https://thesis.robbevanherck.be/#h2:literature-review/rpg-on-the-semantic-web
https://thesis.robbevanherck.be/#h2:literature-review/rpg-on-the-semantic-web
https://thesis.robbevanherck.be/#h2:literature-review/rpg-on-the-semantic-web
https://thesis.robbevanherck.be/#h2:literature-review/rpg-on-the-semantic-web
https://thesis.robbevanherck.be/#h1:semantic-web-technologies/semantic-web-technologies
https://thesis.robbevanherck.be/#h1:semantic-web-technologies/semantic-web-technologies
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/linked-data
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/linked-data
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/rdf
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/rdf
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/knowledge-graphs
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/knowledge-graphs
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/turtle
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/turtle
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/htmlrdfa
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/htmlrdfa
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/htmlrdfa
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/htmlrdfa
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/htmlrdfa
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/sparql
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/sparql
https://thesis.robbevanherck.be/#h3:semantic-web-technologies/querying
https://thesis.robbevanherck.be/#h3:semantic-web-technologies/querying
https://thesis.robbevanherck.be/#h3:semantic-web-technologies/adding-data
https://thesis.robbevanherck.be/#h3:semantic-web-technologies/adding-data
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/solid
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/solid
https://thesis.robbevanherck.be/#h1:nlp/nlp
https://thesis.robbevanherck.be/#h1:nlp/nlp
https://thesis.robbevanherck.be/#h2:nlp/constituency-parsing
https://thesis.robbevanherck.be/#h2:nlp/constituency-parsing
https://thesis.robbevanherck.be/#h2:nlp/named-entity-recognition
https://thesis.robbevanherck.be/#h2:nlp/named-entity-recognition
https://thesis.robbevanherck.be/#h1:architecture/architecture
https://thesis.robbevanherck.be/#h1:architecture/architecture
https://thesis.robbevanherck.be/#h2:architecture/extracting-text-from-files
https://thesis.robbevanherck.be/#h2:architecture/extracting-text-from-files
https://thesis.robbevanherck.be/#h2:architecture/splitting-text-into-sentences
https://thesis.robbevanherck.be/#h2:architecture/splitting-text-into-sentences
https://thesis.robbevanherck.be/#h2:architecture/constituency-tree-parsing
https://thesis.robbevanherck.be/#h2:architecture/constituency-tree-parsing
https://thesis.robbevanherck.be/#h2:architecture/recognizing-entities-using-solid-data
https://thesis.robbevanherck.be/#h2:architecture/recognizing-entities-using-solid-data
https://thesis.robbevanherck.be/#h3:architecture/getting-solid-data
https://thesis.robbevanherck.be/#h3:architecture/getting-solid-data
https://thesis.robbevanherck.be/#h3:architecture/recognizing-entities
https://thesis.robbevanherck.be/#h3:architecture/recognizing-entities
https://thesis.robbevanherck.be/#h2:architecture/reconstructing-sentences-with-metadata
https://thesis.robbevanherck.be/#h2:architecture/reconstructing-sentences-with-metadata
https://thesis.robbevanherck.be/#h1:implementation/implementation
https://thesis.robbevanherck.be/#h1:implementation/implementation
https://thesis.robbevanherck.be/#h2:implementation/data
https://thesis.robbevanherck.be/#h2:implementation/data
https://thesis.robbevanherck.be/#h3:implementation/format
https://thesis.robbevanherck.be/#h3:implementation/format
https://thesis.robbevanherck.be/#h3:implementation/language
https://thesis.robbevanherck.be/#h3:implementation/language
https://thesis.robbevanherck.be/#h3:implementation/phrasing
https://thesis.robbevanherck.be/#h3:implementation/phrasing
https://thesis.robbevanherck.be/#h2:implementation/semanticworks
https://thesis.robbevanherck.be/#h2:implementation/semanticworks
https://thesis.robbevanherck.be/#h3:implementation/semanticworks-middleware
https://thesis.robbevanherck.be/#h3:implementation/semanticworks-middleware
https://thesis.robbevanherck.be/#h3:implementation/provided-services
https://thesis.robbevanherck.be/#h3:implementation/provided-services
https://thesis.robbevanherck.be/#h2:implementation/sentence-service
https://thesis.robbevanherck.be/#h2:implementation/sentence-service
https://thesis.robbevanherck.be/#h2:implementation/constituency-tree-service
https://thesis.robbevanherck.be/#h2:implementation/constituency-tree-service
https://thesis.robbevanherck.be/#h2:implementation/solid-sync-service
https://thesis.robbevanherck.be/#h2:implementation/solid-sync-service
https://thesis.robbevanherck.be/#h3:implementation/appjs
https://thesis.robbevanherck.be/#h3:implementation/appjs
https://thesis.robbevanherck.be/#h3:implementation/solidjs
https://thesis.robbevanherck.be/#h3:implementation/solidjs
https://thesis.robbevanherck.be/#h3:implementation/sparqljs
https://thesis.robbevanherck.be/#h3:implementation/sparqljs
https://thesis.robbevanherck.be/#h2:implementation/named-entity-recognition-service
https://thesis.robbevanherck.be/#h2:implementation/named-entity-recognition-service
https://thesis.robbevanherck.be/#h1:results/results
https://thesis.robbevanherck.be/#h1:results/results
https://thesis.robbevanherck.be/#h2:results/configuration
https://thesis.robbevanherck.be/#h2:results/configuration

7.1.1 Resources
7.1.2 Dispatcher

7.2 Results
7.2.1 Extracting text from files
7.2.2 Extracting sentences from text
7.2.3 Constituency parsing
7.2.4 Recognizing entities

8 Conclusion and Future Work
8.1 Conclusion

8.1.1 Evaluating in Steps
8.1.2 Evaluating as a whole

8.2 Future work
8.2.1 Event Extraction With VerbNet
8.2.2 Live Tagging
8.2.3 Multiple Campaigns in One World

https://thesis.robbevanherck.be/#h3:results/resources
https://thesis.robbevanherck.be/#h3:results/resources
https://thesis.robbevanherck.be/#h3:results/dispatcher
https://thesis.robbevanherck.be/#h3:results/dispatcher
https://thesis.robbevanherck.be/#h2:results/results
https://thesis.robbevanherck.be/#h2:results/results
https://thesis.robbevanherck.be/#h3:results/extracting-text-from-files
https://thesis.robbevanherck.be/#h3:results/extracting-text-from-files
https://thesis.robbevanherck.be/#h3:results/extracting-sentences-from-text
https://thesis.robbevanherck.be/#h3:results/extracting-sentences-from-text
https://thesis.robbevanherck.be/#h3:results/constituency-parsing
https://thesis.robbevanherck.be/#h3:results/constituency-parsing
https://thesis.robbevanherck.be/#h3:results/recognizing-entities
https://thesis.robbevanherck.be/#h3:results/recognizing-entities
https://thesis.robbevanherck.be/#h1:conclusion-and-future-work/conclusion-and-future-work
https://thesis.robbevanherck.be/#h1:conclusion-and-future-work/conclusion-and-future-work
https://thesis.robbevanherck.be/#h2:conclusion-and-future-work/conclusion
https://thesis.robbevanherck.be/#h2:conclusion-and-future-work/conclusion
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/evaluating-in-steps
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/evaluating-in-steps
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/evaluating-as-a-whole
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/evaluating-as-a-whole
https://thesis.robbevanherck.be/#h2:conclusion-and-future-work/future-work
https://thesis.robbevanherck.be/#h2:conclusion-and-future-work/future-work
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/event-extraction-with-verbnet
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/event-extraction-with-verbnet
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/live-tagging
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/live-tagging
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/multiple-campaigns-in-one-world
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/multiple-campaigns-in-one-world

List of Figures
Figure 1: Constituency tree of the sentence “Maggie sees the castle”. Each node

in the tree represents a part of the sentence and its children represent a fur-
ther subdivision. The label on the node indicates which function that part of
the text serves.

Figure 2: Overview of the design of the application. First, the raw files get trans-
formed into pieces of text (1). Then, the pieces of text get split into sentences
(2) which get parsed into constituency trees (3) and tagged with which char-
acters they reference (4b) with data from a Solid pod (4a). Finally, the original
texts are reconstructed in a semantically meaningful way (5).

Figure 3: Overview of the application and its services. Each block represents a
service and an arrow indicates an interaction from one service to the other.
Requests from the frontend enter the system from the identifier.

Figure 4: Constituency tree van de zin “Maggie sees the castle”. Elke knoop in de
boom stelt een deel van de zin voor en zijn kinderen stellen een onderverdel-
ing van dat stuk van de zin voor. Het label van de knoop geeft aan welke
functie dat stuk van de zin heeft in de volledige zin.

Figure 5: Overzicht van het ontwerp van de applicatie. Eerst wordt de ruwe data
omgezet naar stukken tekst (1). Daarna worden de stukken tekst opgesplitst
in zinnen (2) die ontleed worden in constituency trees (3) en getagd met
welke peronages ze naar verwijzen (4b) met data uit een Solid pod (4a). Tot
slot worden de originele teksten gereconstrueerd in een semantisch
betekenisvolle manier (5).

Figure 6: Overzicht van de services in de applicatie. Elk blok stelt een applicatie
voor en een pijl stelt een interactie tussen twee services voor. Requests van
de frontend komen binnen bij de identifier.

Figure 7: Schematic overview a classic system layout where each of the programs
only supports a limited set of file types and produces output that is not com-
patible with the other formats.

Figure 8: Schematic overview of a system with shared data where the files first get
transformed into a shared format that the services can enhance by adding
more data to it. Other services can then extract semantically meaningful data
from it and produce semantically rich output formats.

Figure 9: Constituency tree of the sentence “Maggie sees the castle”. Each node
in the tree represents a part of the sentence and its children represent a fur-
ther subdivision. The label on the node indicates which function that part of
the text serves.

Figure 10: The constituency tree of the sentence “Hildegarde wants to hide Jeffrey
in the throne room”.

Figure 11: Overview of the design of the application. First, the raw files get trans-
formed into pieces of text (1). Then, the pieces of text get split into sentences
(2) which get parsed into constituency trees (3) and tagged with which char-
acters they reference (4b) with data from a Solid pod (4a). Finally, the original

https://thesis.robbevanherck.be/#fig:eaen-constituency-tree
https://thesis.robbevanherck.be/#fig:eaen-constituency-tree
https://thesis.robbevanherck.be/#fig:eaen-constituency-tree
https://thesis.robbevanherck.be/#fig:eaen-constituency-tree
https://thesis.robbevanherck.be/#fig:eaen-design-overview
https://thesis.robbevanherck.be/#fig:eaen-design-overview
https://thesis.robbevanherck.be/#fig:eaen-design-overview
https://thesis.robbevanherck.be/#fig:eaen-design-overview
https://thesis.robbevanherck.be/#fig:eaen-application-overview
https://thesis.robbevanherck.be/#fig:eaen-application-overview
https://thesis.robbevanherck.be/#fig:eaen-application-overview
https://thesis.robbevanherck.be/#fig:eaen-application-overview
https://thesis.robbevanherck.be/#fig:eanl-constituency-tree
https://thesis.robbevanherck.be/#fig:eanl-constituency-tree
https://thesis.robbevanherck.be/#fig:eanl-constituency-tree
https://thesis.robbevanherck.be/#fig:eanl-constituency-tree
https://thesis.robbevanherck.be/#fig:eanl-design-overview
https://thesis.robbevanherck.be/#fig:eanl-design-overview
https://thesis.robbevanherck.be/#fig:eanl-design-overview
https://thesis.robbevanherck.be/#fig:eanl-design-overview
https://thesis.robbevanherck.be/#fig:eanl-application-overview
https://thesis.robbevanherck.be/#fig:eanl-application-overview
https://thesis.robbevanherck.be/#fig:eanl-application-overview
https://thesis.robbevanherck.be/#fig:eanl-application-overview
https://thesis.robbevanherck.be/#fig:pipelined-schematic
https://thesis.robbevanherck.be/#fig:pipelined-schematic
https://thesis.robbevanherck.be/#fig:pipelined-schematic
https://thesis.robbevanherck.be/#fig:pipelined-schematic
https://thesis.robbevanherck.be/#fig:non-pipelined-schematic
https://thesis.robbevanherck.be/#fig:non-pipelined-schematic
https://thesis.robbevanherck.be/#fig:non-pipelined-schematic
https://thesis.robbevanherck.be/#fig:non-pipelined-schematic
https://thesis.robbevanherck.be/#fig:nlp-constituency-tree-example
https://thesis.robbevanherck.be/#fig:nlp-constituency-tree-example
https://thesis.robbevanherck.be/#fig:nlp-constituency-tree-example
https://thesis.robbevanherck.be/#fig:nlp-constituency-tree-example
https://thesis.robbevanherck.be/#fig:ner-constituency-tree
https://thesis.robbevanherck.be/#fig:ner-constituency-tree
https://thesis.robbevanherck.be/#fig:ner-constituency-tree
https://thesis.robbevanherck.be/#fig:ner-constituency-tree
https://thesis.robbevanherck.be/#fig:methodology-overview
https://thesis.robbevanherck.be/#fig:methodology-overview
https://thesis.robbevanherck.be/#fig:methodology-overview
https://thesis.robbevanherck.be/#fig:methodology-overview

texts are reconstructed in a semantically meaningful way (5).
Figure 12: The constituency tree of the sentence “Beowulf sees Johan on top of

the hill.”.
Figure 13: Preview of the hint box in HTML that would be shown when hovering

over the name of a character.
Figure 14: Overview of the basic Semantic.works framework. The identifier takes

in requests from the frontend and passes them on to the dispatcher, who in
turn forwards it to the right service. Services mainly communicate through the
central triple store.

Figure 15: Overview of the application and its services. Each block represents a
service and an arrow indicates an interaction from one service to the other.
Requests from the frontend enter the system from the identifier.

Figure 16: Constituency tree of the sentence “You shake them out.”
Figure 17: Constituency tree of the incorrect sentence “It’s ice cold.” and the cor-

rect version “It’s ice-cold.”. The main difference is the AP (adjective phrase)
tag instead of the NP (noun phrase) tag.

https://thesis.robbevanherck.be/#fig:constituency-tree-example
https://thesis.robbevanherck.be/#fig:constituency-tree-example
https://thesis.robbevanherck.be/#fig:constituency-tree-example
https://thesis.robbevanherck.be/#fig:constituency-tree-example
https://thesis.robbevanherck.be/#fig:hover-preview-pdf
https://thesis.robbevanherck.be/#fig:hover-preview-pdf
https://thesis.robbevanherck.be/#fig:hover-preview-pdf
https://thesis.robbevanherck.be/#fig:hover-preview-pdf
https://thesis.robbevanherck.be/#fig:semantic-works-stack
https://thesis.robbevanherck.be/#fig:semantic-works-stack
https://thesis.robbevanherck.be/#fig:semantic-works-stack
https://thesis.robbevanherck.be/#fig:semantic-works-stack
https://thesis.robbevanherck.be/#fig:application-stack-overview
https://thesis.robbevanherck.be/#fig:application-stack-overview
https://thesis.robbevanherck.be/#fig:application-stack-overview
https://thesis.robbevanherck.be/#fig:application-stack-overview
https://thesis.robbevanherck.be/#fig:constituency-tree-correct
https://thesis.robbevanherck.be/#fig:constituency-tree-correct
https://thesis.robbevanherck.be/#fig:constituency-tree-correct
https://thesis.robbevanherck.be/#fig:constituency-tree-correct
https://thesis.robbevanherck.be/#fig:constituency-tree-ice-cold
https://thesis.robbevanherck.be/#fig:constituency-tree-ice-cold
https://thesis.robbevanherck.be/#fig:constituency-tree-ice-cold
https://thesis.robbevanherck.be/#fig:constituency-tree-ice-cold

List of Listings
Listing 1: Basic example of a Turtle file which defines the foaf prefix and a relation

between Alice and Bob.
Listing 2: Example Turtle file without shorthand notation.
Listing 3: Example Turtle file with shorthand notation that reuses the subject twice

and the predicate once.
Listing 4: Example SPARQL SELECT query that selects every person that Alice

knows, using variable ?otherPerson.
Listing 5: SPARQL SELECT query with multiple graphs where the email address

is queried from a private graph for each person that Alice knows according to
the public graph.

Listing 6: Example INSERT query that adds the data that Alice has the name
“Alice”.

Listing 7: Example INSERT WHERE query that inserts the fact that Bob knows ev-
eryone who has a nickname of “Jimmy”.

Listing 8: Turtle representation of the text “Beowulf sees Johan on top of the hill.
He draws his sword and walks closer.”

Listing 9: Turtle representation of two sentences that originated from one text and
how their attributes are stored.

Listing 10: Turtle representation of the root node of a constituency tree and a child
node in the RDF representation.

Listing 11: Representation of the node containing the proper noun “Beowulf” with
a reference to the character Beowulf.

Listing 12: HTML representation of the tagged sentence “Beowulf sees Johan on
top of the hill.” with a title attribute for both characters referenced and a re-
source tag to link it to the URI of the character.

Listing 13: Example of a delta where the rdf:type of a resource changes.
Listing 14: Example mu-cl-resources configuration describing authors and books.
Listing 15: Example RDF data for books with one book defined with title “My

Diary” and one author with name “Robbe Van Herck”.
Listing 16: The RDF-data from above mapped to JSON:API using the configura-

tion described before.
Listing 17: Pseudo code overview of the sentence-service.
Listing 18: Pseudo code overview of the constituency-tree-service.
Listing 19: Pseudo code overview of the file app.js in solid-sync-service.
Listing 20: Pseudo code overview of the file solid.js in solid-sync-service.
Listing 21: Pseudo code overview of the file sparql.js in solid-sync-service.
Listing 22: SPARQL query to perform the basic named entity recognition.

https://thesis.robbevanherck.be/#lst:ttl-basic
https://thesis.robbevanherck.be/#lst:ttl-basic
https://thesis.robbevanherck.be/#lst:ttl-basic
https://thesis.robbevanherck.be/#lst:ttl-basic
https://thesis.robbevanherck.be/#lst:ttl-shorthand-full
https://thesis.robbevanherck.be/#lst:ttl-shorthand-full
https://thesis.robbevanherck.be/#lst:ttl-shorthand-full
https://thesis.robbevanherck.be/#lst:ttl-shorthand-full
https://thesis.robbevanherck.be/#lst:ttl-shorthand
https://thesis.robbevanherck.be/#lst:ttl-shorthand
https://thesis.robbevanherck.be/#lst:ttl-shorthand
https://thesis.robbevanherck.be/#lst:ttl-shorthand
https://thesis.robbevanherck.be/#lst:sparql-select
https://thesis.robbevanherck.be/#lst:sparql-select
https://thesis.robbevanherck.be/#lst:sparql-select
https://thesis.robbevanherck.be/#lst:sparql-select
https://thesis.robbevanherck.be/#lst:sparql-multiple-graphs
https://thesis.robbevanherck.be/#lst:sparql-multiple-graphs
https://thesis.robbevanherck.be/#lst:sparql-multiple-graphs
https://thesis.robbevanherck.be/#lst:sparql-multiple-graphs
https://thesis.robbevanherck.be/#lst:sparql-insert-data
https://thesis.robbevanherck.be/#lst:sparql-insert-data
https://thesis.robbevanherck.be/#lst:sparql-insert-data
https://thesis.robbevanherck.be/#lst:sparql-insert-data
https://thesis.robbevanherck.be/#lst:sparql-insert-where
https://thesis.robbevanherck.be/#lst:sparql-insert-where
https://thesis.robbevanherck.be/#lst:sparql-insert-where
https://thesis.robbevanherck.be/#lst:sparql-insert-where
https://thesis.robbevanherck.be/#lst:raw-text-example
https://thesis.robbevanherck.be/#lst:raw-text-example
https://thesis.robbevanherck.be/#lst:raw-text-example
https://thesis.robbevanherck.be/#lst:raw-text-example
https://thesis.robbevanherck.be/#lst:sentence-example
https://thesis.robbevanherck.be/#lst:sentence-example
https://thesis.robbevanherck.be/#lst:sentence-example
https://thesis.robbevanherck.be/#lst:sentence-example
https://thesis.robbevanherck.be/#lst:constituency-nodes-example
https://thesis.robbevanherck.be/#lst:constituency-nodes-example
https://thesis.robbevanherck.be/#lst:constituency-nodes-example
https://thesis.robbevanherck.be/#lst:constituency-nodes-example
https://thesis.robbevanherck.be/#lst:constituency-node-with-taidentref
https://thesis.robbevanherck.be/#lst:constituency-node-with-taidentref
https://thesis.robbevanherck.be/#lst:constituency-node-with-taidentref
https://thesis.robbevanherck.be/#lst:constituency-node-with-taidentref
https://thesis.robbevanherck.be/#lst:example-sentence-html
https://thesis.robbevanherck.be/#lst:example-sentence-html
https://thesis.robbevanherck.be/#lst:example-sentence-html
https://thesis.robbevanherck.be/#lst:example-sentence-html
https://thesis.robbevanherck.be/#lst:delta-format
https://thesis.robbevanherck.be/#lst:delta-format
https://thesis.robbevanherck.be/#lst:delta-format
https://thesis.robbevanherck.be/#lst:delta-format
https://thesis.robbevanherck.be/#lst:book-config
https://thesis.robbevanherck.be/#lst:book-config
https://thesis.robbevanherck.be/#lst:book-config
https://thesis.robbevanherck.be/#lst:book-config
https://thesis.robbevanherck.be/#lst:book-ttl
https://thesis.robbevanherck.be/#lst:book-ttl
https://thesis.robbevanherck.be/#lst:book-ttl
https://thesis.robbevanherck.be/#lst:book-ttl
https://thesis.robbevanherck.be/#lst:book-json
https://thesis.robbevanherck.be/#lst:book-json
https://thesis.robbevanherck.be/#lst:book-json
https://thesis.robbevanherck.be/#lst:book-json
https://thesis.robbevanherck.be/#lst:sentence-service-pseudo
https://thesis.robbevanherck.be/#lst:sentence-service-pseudo
https://thesis.robbevanherck.be/#lst:sentence-service-pseudo
https://thesis.robbevanherck.be/#lst:sentence-service-pseudo
https://thesis.robbevanherck.be/#lst:constituency-tree-service-pseudo
https://thesis.robbevanherck.be/#lst:constituency-tree-service-pseudo
https://thesis.robbevanherck.be/#lst:constituency-tree-service-pseudo
https://thesis.robbevanherck.be/#lst:constituency-tree-service-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-app-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-app-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-app-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-app-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-solid-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-solid-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-solid-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-solid-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-sparql-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-sparql-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-sparql-pseudo
https://thesis.robbevanherck.be/#lst:solid-sync-service-sparql-pseudo
https://thesis.robbevanherck.be/#lst:ner-sparql-query-2
https://thesis.robbevanherck.be/#lst:ner-sparql-query-2
https://thesis.robbevanherck.be/#lst:ner-sparql-query-2
https://thesis.robbevanherck.be/#lst:ner-sparql-query-2

RPG

NLP

JSON

RDFa

GM

HTML

CSS

NER

List of Acronyms

Role-Playing Game

Natural Language Processing

JavaScript Object Notation

RDF in Attributes

Game Master

HyperText Markup Language

Cascading StyleSheet

Named Entity Recognition

foaf

schema

ttrpg

rdf

iol

dul

mu

nif

olia

itsrdf

List of Ontologies

Friend of a Friend

Schema.org

TTRpg

RDF

Information Objects lite

DOLCE+DnS Ultralite

mu.semtech

NLP Interchange Format

Ontologies of Linguistic Annotation

ITS 2.0 / RDF

http://xmlns.com/foaf/0.1/
http://xmlns.com/foaf/0.1/
http://schema.org/
http://schema.org/
https://w3id.org/TTRpg#
https://w3id.org/TTRpg#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.w3.org/1999/02/22-rdf-syntax-ns#
http://www.ontologydesignpatterns.org/ont/dul/IOLite.owl#
http://www.ontologydesignpatterns.org/ont/dul/IOLite.owl#
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
http://www.ontologydesignpatterns.org/ont/dul/DUL.owl#
http://mu.semte.ch/vocabularies/core/
http://mu.semte.ch/vocabularies/core/
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#
http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#
http://purl.org/olia/olia.owl#
http://purl.org/olia/olia.owl#
http://www.w3.org/2005/11/its/rdf#
http://www.w3.org/2005/11/its/rdf#

Chapter 1: Introduction
This thesis presents the first steps to creating a system that improves the experience of

playing role playing games (RPGs) in an online environment, as recently more and more
campaigns are happening online. While playing online has its benefits such as being able
to play independently of where players are in the real world, it also has its drawbacks. A
major problem is the fact that the plethora of tools available do not work together. In this
thesis, the groundwork will be laid for a system that allows many different tools to work to-
gether, independently of their exact function.

The focus in this thesis will be to provide enhancements to the process of keeping logs
during a game by analyzing the text and adding relevant metadata. More specifically, it will
analyze these texts and extract the names of characters that exist in the campaign and add
a link to their resource to the data. Instead of inventing data formats from the ground up,
this thesis builds on the work done in the field of semantic web.

The ideal future of the project is a system where there is not just this one task of analyz-
ing the logs of the game, but a system where different tools such as character creators,
dice simulators and world maps cooperate by making use of and contributing to the same
dataset. This data could then be enhanced by different reasoners and services to add use-
ful metadata, such as finding out which player has more luck on dice rolls, combining the
logs of different players or, in the case of this research, annotating text with character meta-
data.

This thesis will not create a
system where each task is a
pipeline that takes input, per-
forms a task and outputs the re-
sult, but a system where every
step in the process produces
useful data that can be reused
by other systems. The former is
shown in Figure 7, where not
every system supports every
file type, processing steps are
done multiple times and the re-
sulting formats are incompati-
ble. The latter is shown in
Figure 8, where the file formats
are converted into a shared for-
mat, and analysis is done by
services that work on this
shared format, instead of on the file formats directly. This also results in more rich data ex-
ported from the service.

Figure 7:

A

B

C

Schematic overview a classic
system layout where each of the programs
only supports a limited set of file types and
produces output that is not compatible with
the other formats.

https://thesis.robbevanherck.be/#fig:pipelined-schematic
https://thesis.robbevanherck.be/#fig:pipelined-schematic
https://thesis.robbevanherck.be/#fig:non-pipelined-schematic
https://thesis.robbevanherck.be/#fig:non-pipelined-schematic

Since RPGs are intrinsically
free-form and improvisational,
using them as a testbed poses
both interesting challenges and
provides unique opportunities.
Two examples of this are de-
scribed below.

The first example is the fact
that data comes in many differ-
ent formats, in the case of
RPGs, this is because each
player uses a method to keep
track of their character and
story line that suits them most.
Some keep logs in a shared
document, others use
wikipedia-style web applica-
tions and some even use draw-
ings on paper. If we want to create a system that the most amount of people can use, we
also want to support as many of these formats as we can. In the real world, this problem
exists too. Many documents only exist as PDF, as a Microsoft Word document or even as
an image of a scanned document. Tools that want to use the data from these documents
needs to support most of them as well.

The second example is the fact that within an RPG world, certain assumptions can be
made to make processing the data easier. For example, in a well-documented RPG cam-
paign, we can assume that a reference to every character, object and location that has
been seen by the players exists. However, if it has not been seen by the players, that does
not mean it doesn’t exist as it might be that the game master (GM) has not prepared that

part of the world yet. This allows us to experiment with semantic webs open world assump-

tion, which states that a fact is not necessarily false if we don’t know it is true. In the real
world, we also assume that we will never have all the data of everything in existence, so we
need to be able to deal with this incomplete data.

The rest of this thesis is structured as follows: Chapter 2 will give an overview of the liter-
ature related to the subject of this thesis. Chapter 3 provides an overview of the semantic
web technologies that are used and provides more context on how they work. Chapter 4
describes the natural language processing techniques that are used. Chapter 5 explains
the architectureof each part in the application. Chapter 6 explains the technical choices
made when implementing the application. Chapter 7 will show and evaluate the final result
as a whole and finally, Chapter 8 draws conclusions and lays out possible future work.

Figure 8:

A

B

C

Schematic overview of a system
with shared data where the files first get
transformed into a shared format that the
services can enhance by adding more data
to it. Other services can then extract
semantically meaningful data from it and
produce semantically rich output formats.

https://thesis.robbevanherck.be/#literature-review
https://thesis.robbevanherck.be/#literature-review
https://thesis.robbevanherck.be/#semantic-web-technologies
https://thesis.robbevanherck.be/#semantic-web-technologies
https://thesis.robbevanherck.be/#nlp
https://thesis.robbevanherck.be/#nlp
https://thesis.robbevanherck.be/#architecture
https://thesis.robbevanherck.be/#architecture
https://thesis.robbevanherck.be/#implementation
https://thesis.robbevanherck.be/#implementation
https://thesis.robbevanherck.be/#results
https://thesis.robbevanherck.be/#results
https://thesis.robbevanherck.be/#conclusion-and-future-work
https://thesis.robbevanherck.be/#conclusion-and-future-work

Chapter 2: Literature Review

1. NLP on the Semantic Web

The idea to use NLP on the semantic web is not new. Many approaches and ideas have
been proposed over the years. Wilks and Brewster[1] proposed in 2009 that a to achieve a
semantic web, the usage of NLP was required to extract data from the world wide web and
transform it into RDF.

In Natural Language Processing for the Semantic Web[2], Maynard et al. explain the us-
age of NLP, how they can be used to enhance the semantic web and vice versa. They also
talk about the difficulties in natural language processing, such as noisy content (the inclu-
sion of emoticons, capitalization, …).

A recent survey by Martinez-Rodriguez from 2020[3] shows that while the evolution of in-
formation extraction is still ongoing, there has been a shift from specific, domain-limited
analyses to more broad approaches. For example, where NER was often used to extract
entities from a custom dataset, it is now more and more used to extract entities from larger,
general datasets such as DBpedia.

In an effort to combine the plethora of NLP tools that were created, Hellmann et al.[4]
presented NIF, which would serve as a shared ontology for all NLP tools to be able to co-
operate and understand the data that was produced.

Some tools were also created that utilize the existing standards and ideas to provide se-
mantically rich tagging of data. One of these is FRED[5] which is a general-purpose text
annotation tool. It performs sentence analysis and stores the results in a RDF graph. This
provides a lot of interesting data, however because FRED uses custom ontologies for many
of their resources, the exact semantic meaning becomes unclear.

Another system is LODifier[6], which performs many NLP tasks and combines the data of
all these steps in a RDF knowledge graph. A major shortcoming of LODifier that is de-
scribed in the paper is that the system uses a pipelined approach, resulting in problems for
things like error recovery.

Finally, the system that resembles the system proposed in this thesis most is the
SlugNERDS[7]. Their approach also uses constituency parsing, but perform extra analyses
on the resulting tree before extracting the entities. Their approach also goes further than
detecting names of characters. The major difference however is the fact that their system
does not store the data in RDF, which limits the interoperability of the system.

2. RPG on the Semantic Web

In the early days of the semantic web, there was some talk about the interesting combi-
nation of RPGs and the semantic web. Archived emails from the xml-dev[8] and the
rdfweb-dev[9] mailing lists from 2003 and 2004 show that the idea to use RPGs on the se-

https://thesis.robbevanherck.be/#ref-1
https://thesis.robbevanherck.be/#ref-1
https://thesis.robbevanherck.be/#ref-2
https://thesis.robbevanherck.be/#ref-2
https://thesis.robbevanherck.be/#ref-3
https://thesis.robbevanherck.be/#ref-3
https://thesis.robbevanherck.be/#ref-4
https://thesis.robbevanherck.be/#ref-4
https://thesis.robbevanherck.be/#ref-5
https://thesis.robbevanherck.be/#ref-5
https://thesis.robbevanherck.be/#ref-6
https://thesis.robbevanherck.be/#ref-6
https://thesis.robbevanherck.be/#ref-7
https://thesis.robbevanherck.be/#ref-7
https://thesis.robbevanherck.be/#ref-8
https://thesis.robbevanherck.be/#ref-8
https://thesis.robbevanherck.be/#ref-9
https://thesis.robbevanherck.be/#ref-9

mantic web is about as old as the semantic web itself. After an extensive search very few
papers were found that cover this subject. This seems to indicate that the interest in the
subject has died out somewhat in recent years.

Chapter 3: Semantic Web Technologies
This chapter will give an overview of some of the technologies from the semantic web

used during the design and implementation of the application that make this possible.

Namely, linked data, RDF, knowledge graphs, Turtle, HTML with RDFa, SPARQL and Solid

wil be covered.

1. Linked Data

On most of the web, the data provided by services and websites consists of just the re-
quested resource, which makes it hard to find more data about the resource or discover re-

lated data. A proposal to mitigate this is linked data, which is data that contains links to
other data so both the user and the computer can easily discover related data. A query to
an API to get information about a person, might give back their birthday and full name, but
also information about their significant other. In non-linked data, this field about the signifi-
cant other could just contain the name of the significant other, which does not directly allow
finding more information about this person. In linked data, this would contain a link to an in-
formation source about the person. This makes it possible to perform more complex
queries that involve multiple data sources, without knowing where they are in advance.

2. RDF

In RDF, data is stored as triples. These triples consist of three parts, namely the subject,

predicate and object. As the names imply, the subject is the resource being described, the
object is the resource or data it is linked to and the predicate is the relation between the
two. In other words, the subject and object are connected by the given predicate. For ex-

ample, the triple (Alice, knows, Bob) means that Alice is linked to Bob with the
“knows” predicate. In other words, this means that Alice knows Bob. Do note that this triple

does not imply that Bob knows Alice, as that would be the triple (Bob, knows, Alice) .
Literals can also be used as the object of a triple, such as strings or numbers. For example

(Alice, age, 23) or (Bob, nickname, "Bobby") .

On the web, generic names such as Alice or age are not used, instead Uniform
Resource Identifiers (URIs) are used to describe a resource or predicate. This is to make
sure there is no ambiguity about what is being described. Everything gets its own unique

URI. For example, Alice’s identifier may be http://mywebsite.com/Alice and Bobs

identifier may be http://bobswebsite.com/card#me . This way, every person or re-
source is uniquely identified.

Predicates are also referenced with URIs, so there is no ambiguity about which predicate
is being used. To avoid having to reinvent every predicate or resource every time, there ex-

ist so-called ontologies, which are a set of predicates and resources designed for a specific
purpose. These ontologies form the basis of the interoperability of the semantic web, be-
cause two services using the same predicate will know what the data represents, without

having to interact with the other service. For example the knows predicate from before

could be the predicate from the “Friend of a Friend”-ontology (FOAF)[10] which has URI

http://xmlns.com/foaf/0.1/knows . By using this URI, FOAFs definition of “knows”
can be found:

knows - A person known by this person (indicating some level of reciprocated interaction
between the parties).

The FOAF ontology also provides a more thorough definition which provides more detail
on when to use it and what the implications are.

Because URIs can become long and hard to read, a prefix is often used to shorten them.

For example, the prefix foaf can be defined as being

http://xmlns.com/foaf/0.1/ , and instead of the whole URI of “knows”, the short

version foaf:knows can be used, which is identical the full URI, but makes writing and
reading triples easier. In this thesis, shorthand notation will mostly be used for predicates to
increase legibility. The list of used ontologies can be found in List of Ontologies.

One ontology that is especially relevant to this thesis is the TTRpg ontology[11] that was
created at the same time as this thesis was being written. It provides a set of URIs for de-
scribing tabletop RPGs and their characters, locations and actions. This ontology was cre-
ated to provide a uniform way to describe this data. The ontology was made to be used in
two ways, first to describe generic RPG-related data that was not bound to a specific game
or type of RPG and second to create ontologies that describe a game such as Dungeons
and Dragons[12] in detail, so the data can be made more accurate.

3. Knowledge Graphs

Triples can also be interpreted as being an edge between two nodes, where the edge
has the label of the predicate and goes from the subject to the object. When combined into

a graph, this is called a knowledge graph. As no knowledge graph can contain all the infor-
mation in existence, it is often necessary to combine data from multiple graphs to get all the
information needed. This is possible because each knowledge graph should use the same
URI to describe a certain object.

On these knowledge graphs, so-called reasoners can be run, which are pieces of soft-
ware that can make deductions about the data by looking at what is already defined and
adding more information to the graph. For example, if

(person1, fatherOf, person2) exists, it can be assumed that

(person2, childOf, person1) should also exist. Reasoners can consist of simple
rules as in the example, but can also exist of complex programs and/or use external
sources for added information.

4. Turtle

Knowledge graphs can be serialized using a format called Turtle[13], a format that is both

https://thesis.robbevanherck.be/#ref-10
https://thesis.robbevanherck.be/#ref-10
https://thesis.robbevanherck.be/#list-of-ontologies
https://thesis.robbevanherck.be/#list-of-ontologies
https://thesis.robbevanherck.be/#ref-11
https://thesis.robbevanherck.be/#ref-11
https://thesis.robbevanherck.be/#ref-12
https://thesis.robbevanherck.be/#ref-12
https://thesis.robbevanherck.be/#ref-13
https://thesis.robbevanherck.be/#ref-13

machine and human readable. This section will not cover the whole specification, but pro-
vide context to be able to read snippets of data further in this thesis.

In its most basic form, Turtle files consist of three URIs separated by spaces which repre-
sent the subject, predicate and object respectively. URIs are written between triangle

brackets <> and each line ends with a period. Defining prefixes is possible by writing

@prefix , followed by the prefix, a colon and the URI it expands to. For an example, see
Listing 1.

It is also possible to reuse the subject and the predicate in Turtle. To reuse the subject
and predicate, end the triple with a comma instead of a period and type the new object af-
ter it. To reuse only the subject, end the triple with a semicolon and type the new predicate
and object after it. These notations reduce the amount of duplicated URIs in the Turtle files
and make them more legible. As an example, the two Turtle files in Listing 2 and Listing 3
represent the same information.

A final shorthand that is often used is the use of the string a instead of the predicate

rdf:type . This way, we can type

<http://mywebsite.com/Alice> a foaf:Person to define what type the resource

Listing 1:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

<http://mywebsite.com/Alice> foaf:knows <http://bobswebsite.com/card#me> .

Basic example of a Turtle file which defines the foaf prefix and a relation between
Alice and Bob.

Listing 2:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix schema: <http://schema.org/> .

<http://mywebsite.com/Alice> schema:name "Alice" .

<http://mywebsite.com/Alice> foaf:knows <http://bobswebsite.com/card#me> .

<http://mywebsite.com/Alice> foaf:knows <http://carol.organisation.org/about> .

Example Turtle file without shorthand notation.

Listing 3:

@prefix foaf: <http://xmlns.com/foaf/0.1/> .

@prefix schema: <http://schema.org/> .

<http://mywebsite.com/Alice> schema:name "Alice" ;

foaf:knows <http://bobswebsite.com/card#me> ,

<http://carol.organisation.org/about> .

Example Turtle file with shorthand notation that reuses the subject twice and the
predicate once.

https://thesis.robbevanherck.be/#lst:ttl-basic
https://thesis.robbevanherck.be/#lst:ttl-basic
https://thesis.robbevanherck.be/#lst:ttl-shorthand-full
https://thesis.robbevanherck.be/#lst:ttl-shorthand-full
https://thesis.robbevanherck.be/#lst:ttl-shorthand
https://thesis.robbevanherck.be/#lst:ttl-shorthand

<http://mywebsite.com/Alice> has.

5. HTML + RDFa

To display web pages in a browser, most websites use HTML[14] which tells the browser
what should be shown and how. Together with CSS this can make the data they show eas-
ily understandable for a human reader. For machine readers, this is significantly more diffi-
cult as the lay-out and structure of each document differs. This poses a problem for ma-
chine readers that analyze a site to simply get the data on it, but also for those that try
make the site available for people with disabilities. For example, people that use a screen
reader might run into problems if the screen reader cannot tell which parts it should read
and which parts it should not read.

The latter problem can be helped with the use the appropriate HTML tags to indicate
what semantic meaning each part of the document has. For example, marking the footer of

a page as <footer> can tell the screen reader that that part may not be useful to the per-
son if they are trying to read an article. It is also possible to add metadata to the tags, such

as the alt tag for images, which tells the browser what is on the image. The Ghent

University logo on the first page is tagged with the alt text “Logo Ghent University”, so
screen readers can explain what is visible on the image.

In a similar way to the alt tag, RDF data can be embedded into HTML to explain what
is meant by that piece of the page using RDFa[15]. For example, the title of this thesis is

tagged with property="foaf:name schema:name" , which tells the browser that the
title is “Creating an Extensible Semantic Web Framework for Annotating Role Playing
Game Logs” according to the definition of both Schema.org and of Friend of a Friend.
Programs can then easily extract this data by looking at the tags and provide extra function-
ality.

A commonly used example of this are previews that are shown when sharing a link on a
chat application or on social media. If the website that is being linked provides the meta-
data in a way that the chat application or social medium understands, it can show the user
a title, summary and/or a picture to indicate what the link will contain.

6. SPARQL

Knowledge graphs are only useful if it is possble to do something with them, which is
why the query language SPARQL[16] was created. Like in Section 3.4, this section will not
explain the entire specification, but explain enough to understand the SPARQL code in this
thesis.

6.1. Querying

Querying a SPARQL database can be done with the SELECT keyword. The query itself
consists of a format similar to Turtle, but with some URIs replaced with variables. These
variables start with a question mark, directly followed by the name of the variable. The

https://thesis.robbevanherck.be/#ref-14
https://thesis.robbevanherck.be/#ref-14
https://thesis.robbevanherck.be/#ref-15
https://thesis.robbevanherck.be/#ref-15
https://thesis.robbevanherck.be/#ref-16
https://thesis.robbevanherck.be/#ref-16
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/turtle
https://thesis.robbevanherck.be/#h2:semantic-web-technologies/turtle

SPARQL engine will then attempt to fill in these variables so that the resulting set of triples
does exist in the knowledge graph. It could be that there are multiple options for variable
bindings, in which case SELECT will return all possibilities.

A SELECT query consists of the word SELECT , followed by which variables that the

SPARQL engine should return or a * if it should return all the variables in the query. After

this comes a WHERE block, that consists of the word WHERE and the template between
curly brackets. It is also possible to define prefixes before the SELECT query to make writ-

ing URIs easier. This is done by using the word PREFIX , the name directly followed by a
colon and then the URI.

For example, the query in Listing 4 asks the SPARQL engine all the people that Alice
knows.

If the SPARQL engine supports multiple different graphs, it is possible to add one or

more GRAPH blocks inside the WHERE block to define which graph the data should be

queried from. Variables can be used between different GRAPH blocks. For example, if an
application has a public and a private graph where the private graph contains sensitive in-
formation such as e-mail addresses and the public graph contains information such as
friends and name, the e-mail addresses of all the people Alice knows can be queried with
the query in Listing 5 (assuming access to the private graph).

Listing 4:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?otherPerson WHERE {

<http://mywebsite.com/Alice> foaf:knows ?otherPerson .

}

Example SPARQL SELECT query that selects every person that Alice knows, using
variable ?otherPerson.

Listing 5:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT ?email WHERE {

GRAPH <http://myapp.com/public> {

<http://mywebsite.com/Alice> foaf:knows ?otherPerson .

}

GRAPH <http://myapp.com/private> {

?otherPerson foaf:mbox ?email .

}

}

SPARQL SELECT query with multiple graphs where the email address is queried
from a private graph for each person that Alice knows according to the public graph.

https://thesis.robbevanherck.be/#lst:sparql-select
https://thesis.robbevanherck.be/#lst:sparql-select
https://thesis.robbevanherck.be/#lst:sparql-multiple-graphs
https://thesis.robbevanherck.be/#lst:sparql-multiple-graphs

6.2. Adding data

The keyword INSERT is used to add data to the knowledge graph. The easiest way to

insert data is using INSERT DATA followed by one block containing the data to be in-
serted.

See Listing 6 for an example.

However, if the data inserted depends on the data already in the database, the query can

also consist of an INSERT and a WHERE block. The SPARQL engine will first bind the

variables in the WHERE block and fill these in in the INSERT block and add those to the
database. For example, the query to add the fact that Bob knows everyone with the nick-
name “Jimmy”, can be seen in Listing 7.

7. Solid

Solid is a system that provides the ability for users to create their own datapods, or pods

for short. It was started by the inventor of the web, Sir Tim Berners-Lee as a way to coun-
teract the current trend of applications to keep a users data in their own data vaults. This
way, users would have their data in a storage medium they control and applications read
from those pods when they need the data. This cuts the current hard-wiring between appli-
cation and data and replaces it with an environment where data and applications are han-
dled separately.

Listing 6:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

INSERT DATA {

<http://mywebsite.com/Alice> foaf:name "Alice".

}

Example INSERT query that adds the data that Alice has the name “Alice”.

Listing 7:

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

INSERT {

<http://bobswebsite.com/card#me> foaf:knows ?jimmy .

} WHERE {

?jimmy foaf:nick "Jimmy" .

}

Example INSERT WHERE query that inserts the fact that Bob knows everyone who
has a nickname of “Jimmy”.

https://thesis.robbevanherck.be/#lst:sparql-insert-data
https://thesis.robbevanherck.be/#lst:sparql-insert-data
https://thesis.robbevanherck.be/#lst:sparql-insert-where
https://thesis.robbevanherck.be/#lst:sparql-insert-where

Chapter 4: NLP
Humans write text in a way that makes sense to humans using things like sentences,

words and punctuation. This allows the expression of complex topics and concepts, in
many different ways. Humans can extract the meaning of these sentences fairly easily, but
for a computer this task is significantly harder. The study of analyzing this natural language
using computers is called Natural Language Processing (NLP) and is utilized in many diff-

fferent fields such as commerce, where an automated response may be sent to the client if
they ask for a common support question. This section will explain two major NLP tech-

niques, namely constituency parsing and named entity recognition.

1. Constituency Parsing

The first step to understanding a sentence is
to figure out what function each word has in the
sentence. To do this, the sentence gets parsed
into a tree where each node represents part of
the sentence and what function it performs.
Nodes can have child-nodes that describe that
part of the sentence more specifically, usually
by splitting it up into smaller parts. Some exam-
ple labels are:

• S : Sentence

• N : Noun

• V : Verb

• NP : Noun Phrase (group of words that
serves the function of a noun)

• VP : Verb Phrase (group of words that
serves the function of a verb)

Once this tree of the sentence is con-
structed, reasoning over it in an abstract man-
ner becomes possible. For example, if chang-

ing the value of a NP -node in a sentence with another noun phrase will make sure the
sentence remains grammatically valid. These operations are significantly harder on an sen-
tence that has not been parsed, as it is not known in advance what function each word per-
forms. An example parse tree can be found in Figure 9.

2. Named Entity Recognition

Named entities are all entities that can be directly referenced by a name. This includes
proper nouns such as Hildegarde or Jeffrey, but not general terms such as “the throne

room”. The process of extracting these named entities from a sentence is called named en-

tity recognition (NER). For example, the sentence

Figure 9:

S

NP VP

PN

Maggie

V NP

sees

D N

the castle

Constituency tree
of the sentence “Maggie sees
the castle”. Each node in the
tree represents a part of the
sentence and its children
represent a further
subdivision. The label on the
node indicates which function
that part of the text serves.

https://thesis.robbevanherck.be/#fig:nlp-constituency-tree-example
https://thesis.robbevanherck.be/#fig:nlp-constituency-tree-example

Hildegarde wants to hide Jeffrey in the throne room.

can be tagged as

[Hildegarde]person wants to hide [Jeffrey]person in the throne room.

There are many ways to per-
form NER, but this thesis
makes use of constituency
trees. The constituency tree of
the example sentence can be
seen in Figure 10.

From this constituency tree,
all the proper nouns (PN) and
noun phrases (NP) can be
found, as well as their value.
These values can be matched
with all the characters that are
known and check if any of their
names match the value. If this
is the case, the tag can be
added. Analyzing the con-
stituency tree in Figure 10 in
this way and extracting the sentence from it, this becomes.

[Hildegarde]http://calippo.com/hildegarde wants to hide [Jeffrey]http://calippo.com/jeffrey in the

throne room.

Once these tags are known, they could be used to include clickable links to the charac-
ters or allow the front-end to filter only sentences that contain a given character. This is es-
pecially useful if a character has multiple different names, such as a princess named
Helena that goes undercover as Diede, or a character named “Brother Jacoba” that is
sometimes called “Jacoba” and other times “The Brother”.

Performing the named entity recognition this way also avoids tagging words that are not
names. For example, a character with a name that could also be a verb such as “Flip” will
not be tagged in sentences like “I flip a coin”, as the word “flip” in that sentence is a verb
and not a proper noun.

Figure 10:

S

NP VP

PN

Hildegarde

V S

wants

VP

P VP

to

V NP

hide

NP PP

PN

Jeffrey

P NP

in

D N N

the throne room

The constituency tree of the
sentence “Hildegarde wants to hide Jeffrey in
the throne room”.

https://thesis.robbevanherck.be/#fig:ner-constituency-tree
https://thesis.robbevanherck.be/#fig:ner-constituency-tree
https://thesis.robbevanherck.be/#fig:ner-constituency-tree
https://thesis.robbevanherck.be/#fig:ner-constituency-tree

Chapter 5: Architecture

Overview

This section will lay out the design of the application and what choices were made to get
to the final result. These choices are often the question of how to save the data in a way
that it can be easily reused and what ontologies to use. The overview in Figure 11 shows
all the steps schematically, which are the following:

1. Extract pieces of text from raw files.
2. Split pieces of text into sentences.
3. Parse sentences into constituency trees.
4. Add metadata to the constituency trees using a Solid pod.
5. Reconstruct the original sentences, enriched with metadata.

Each of the following sections will go into more detail on one of these steps.

Figure 11:

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua. Ut

enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur. Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum.

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur.

Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum.

Lorem ipsum dolor sit amet,

consectetur adipisicing elit, sed

do eiusmod tempor incididunt ut

labore et dolore magna aliqua.

Ut enim ad minim veniam, quis

nostrud exercitation ullamco

laboris nisi ut aliquip ex ea

commodo consequat.

Duis aute irure dolor in

reprehenderit in voluptate velit

esse cillum dolore eu fugiat nulla

pariatur.

Excepteur sint occaecat

cupidatat non proident, sunt in

culpa qui officia deserunt mollit

anim id est laborum.

1 2 3 4 5

(a)

(b)

Overview of the design of the application. First, the raw files get
transformed into pieces of text (1). Then, the pieces of text get split into
sentences (2) which get parsed into constituency trees (3) and tagged with
which characters they reference (4b) with data from a Solid pod (4a). Finally,
the original texts are reconstructed in a semantically meaningful way (5).

https://thesis.robbevanherck.be/#fig:methodology-overview
https://thesis.robbevanherck.be/#fig:methodology-overview

1. Extracting Text From Files

The first step in the process is to acquire the text that is contained in the player logs in
structured data. As these logs can come in many different formats, it is important to first
turn them into a known structure, independently of their original format. There are many
ways to store plain text in RDF, but the one used in this thesis uses the definition by IOLite,

namely iol:Text .

IOLite[17] (prefix iol), short for “Information Objects ontology lite” is an extension of

the DOLCE Ultralite[18] (prefix dul) upper-ontology. DOLCE Ultralite is an upper-ontology
that provides concepts that can be reused by other ontologies so there is interoperability
among these ontologies. DOLCE Ultralite focuses on physical and social concepts and
IOLite is an extension that, as the name implies, allows the representation of information

objects. An information object is, according to the definition by DOLCE Ultralite:

A piece of information, such as a musical composition, a text, a word, a picture, inde-
pendently from how it is concretely realized.

Which corresponds to what is needed to store the texts. To indicate which value the

piece of text has, the predicate rdf:value is used. An example is shown in Listing 8.

Since each type of data requires a specific approach, this was done manually for each

set of logs. Most of the time, an iol:Text was created for each paragraph, but some
sources did not have paragraph, so other divisions were made too.

Listing 8:

<http://pantheonparty.com/text/1> a iol:Text;

rdf:value "Beowulf sees Johan on top of the

 hill. He draws his sword and walks closer."@en.

Turtle representation of the text “Beowulf sees Johan on top of the hill. He draws his
sword and walks closer.”

https://thesis.robbevanherck.be/#ref-17
https://thesis.robbevanherck.be/#ref-17
https://thesis.robbevanherck.be/#ref-18
https://thesis.robbevanherck.be/#ref-18
https://thesis.robbevanherck.be/#lst:raw-text-example
https://thesis.robbevanherck.be/#lst:raw-text-example

2. Splitting Text Into Sentences

The second step to analyzing text was to split the text up into sentences that can be ana-
lyzed separately. While this step in itself is pretty straight-forward, it is important to split the
possibly large pieces of text up into smaller, manageable pieces. The main design consid-
eration was how to model the data in linked data.

As the previous step uses iol:Text to store raw, untreated text, this step uses that for-

mat to read in text as well. It uses iol:Sentence for sentences extracted from this text.

The value of the iol:Sentence s is indicated with the predicate rdf:value and to link

the iol:Text and iol:Sentence s, the predicate dul:hasComponent is used. The
piece of text in Listing 8 from the previous part will turn into the data shown in Listing 9.

Listing 9:

<http://pantheonparty.com/sentence/1> a iol:Sentence;

rdf:value "Beowulf sees Johan on top of the hill.".

<http://pantheonparty.com/sentence/2> a iol:Sentence;

rdf:value "He draws his sword and walks closer.".

<http://pantheonparty.com/text/1> dul:hasComponent <http://example.com/sent/1>,

<http://example.com/sent/2>.

Turtle representation of two sentences that originated from one text and how their
attributes are stored.

https://thesis.robbevanherck.be/#lst:raw-text-example
https://thesis.robbevanherck.be/#lst:raw-text-example
https://thesis.robbevanherck.be/#lst:sentence-example
https://thesis.robbevanherck.be/#lst:sentence-example

3. Constituency Tree Parsing

The next step in analyzing sentences is parsing the sentences into a constituency tree.
Once this constituency tree is constructed, it needs to be converted into RDF, for which a
data model needs to be constructed.

The main ontologies for this task are the NLP Interchange Format 2.0 core ontology[19]

(prefix nif) and the Ontologies of Linguistic Annotation (OLiA) [20] (prefix olia). Both of
these are commonly used when representing NLP data in RDF.

The NLP Interchange Format
(NIF) is a format that provides
interoperability between differ-
ent NLP tools, by providing
specifications, ontologies and
software. For this step, mainly
the NIF core ontology will be
used, as this provides most of
the predicates needed. More
specifically the following predi-
cates will be used:

• nif:isString :
Indicates the value of a
node (and its children).

• nif:posTag : The Part of
Speech tag, as an OLiA
tag (see below).

• nif:subString and nif:superString : Indicates that the object is a part of the
subject and vice versa.

• nif:beginIndex and nif:endIndex : Indicates where a substring starts and
ends in the superstring, both zero-based, inclusive indices.

The Ontologies of Linguistic Annotation (OLiA) is a set of definitions for many different
types of NLP annotations. In this case, their definitions of the part of speech (POS) tagging
of words are used to tag the constituency trees.

One of the sentences from the previous examples “Beowulf sees Johan on top of the
hill.”, leads to the constituency tree in Figure 12. Since printing the whole tree in Turtle for-
mat would be too long, only two nodes are serialized. The first one is the root node, con-
taining the entire sentence. The second one is the noun phrase “the hill”. Both can be seen
in Listing 10. As can be seen, the major difference is the fact that non-root nodes have the

predicates nif:beginIndex , nif:endIndex and nif:superString . The latter
node has a begin and end index of 3 and 10 respectively, as the parent node represents

Figure 12:

S

NP VP

SFP

PN

Beowulf

V NP

sees

NP PP

PN

Johan

P NP

on

NP PP

N

top

P NP

of

D N

the hill .

The constituency tree of the
sentence “Beowulf sees Johan on top of the
hill.”.

https://thesis.robbevanherck.be/#ref-19
https://thesis.robbevanherck.be/#ref-19
https://thesis.robbevanherck.be/#ref-20
https://thesis.robbevanherck.be/#ref-20
https://thesis.robbevanherck.be/#fig:constituency-tree-example
https://thesis.robbevanherck.be/#fig:constituency-tree-example
https://thesis.robbevanherck.be/#lst:constituency-nodes-example
https://thesis.robbevanherck.be/#lst:constituency-nodes-example

the value “of the hill”, of which we need to take characters 3 to 10 (inclusive) to get “the
hill”.

Listing 10:

Root node

<http://pantheonparty.be/constituency-node/1> a nif:String, iol:Sentence;

nif:isString "Beowulf sees Johan on top of the hill.";

nif:posTag olia:Sentence;

nif:subString <http://pantheonparty.be/constituency-node/2>,

<http://pantheonparty.be/constituency-node/3>,

<http://pantheonparty.be/constituency-node/4>.

Noun Phrase node

<http://pantheonparty.be/constituency-node/10> a nif:String;

nif:isString "the hill";

nif:beginIndex 3;

nif:endIndex 10;

nif:posTag olia:NounPhrase;

nif:superString <http://pantheonparty.be/constituency-node/9>;

nif:subString <http://pantheonparty.be/constituency-node/11>,

<http://pantheonparty.be/constituency-node/12>.

Turtle representation of the root node of a constituency tree and a child node in the
RDF representation.

4. Recognizing Entities using Solid Data

This step consists of two separate tasks, namely getting the Solid data and extracting the
entities. Both will be described below.

4.1. Getting Solid Data

The user should be able to store the data of their characters and campaigns in their per-
sonal Solid pod. This way, they have control over their own data and can link to other pods
to create a decentralized storage of the characters. Before the data can be analyzed, a lo-
cal copy of this data is needed that can be accessed by the SPARQL engine for easier pro-
cessing.

The Community Solid Server (CSS) has a functionality that allows the use of client cre-
dentials, which removes the need to store the users password to log in, but utilizes a gener-
ated key that can be revoked by the user when needed. With these credentials, the applica-
tion can request a token id and secret that allows it to make request authenticated as the
user for a certain period of time.

By starting from a user-provided root and recursively fetching all resources in the pod, all
data can be stored to a quad store. A quad store is useful because this data model orders
triples using named graphs. By using these named graphs, we can keep track of the
source of each triple. By constructing a SPARQL INSERT query, all the data can be added
to the central database.

4.2. Recognizing Entities

With all the previous steps set up, a basic form of Named Entity Recognition can be per-
formed. In this step, each proper noun or noun phrase in the constituency tree is matched
to the names of the characters that are currently known in the database.

Names can consist of one word, such as “Heksina” or “Serafina”, which are just one
proper noun. Names can also consist of two words, such as “Lady Ghost”, in which case
the full name is a noun phrase and needs to be matched as a whole. Because of this, both
proper nouns and noun phrases need to be checked to get all the references.

To link the node in the constituency tree and the character it references, the itsrdf [21]
ontology is used, which was made by W3C to allow mapping of the Internationalization Tag

Set[22] into RDF data. This step only uses the taIdentRef predicate, which indicates
which identifier the subject references to.

In the example sentence “Beowulf sees Johan on top of the hill.”, the nodes representing

“Beowulf” and “Johan” will get a itsrdf:taIdentRef link to their respective character.
We can see this for the node containing the proper noun “Beowulf” in Listing 11.

https://thesis.robbevanherck.be/#ref-21
https://thesis.robbevanherck.be/#ref-21
https://thesis.robbevanherck.be/#ref-22
https://thesis.robbevanherck.be/#ref-22
https://thesis.robbevanherck.be/#lst:constituency-node-with-taidentref
https://thesis.robbevanherck.be/#lst:constituency-node-with-taidentref

Listing 11:

other NIF tags have been removed for brevity

<http://pantheonparty.be/constituency-node/20> a nif:String;

nif:isString "Beowulf";

itsrdf:taIdentRef <http://pantheonparty.com/beowulf>

Representation of the node containing the proper noun “Beowulf” with a reference
to the character Beowulf.

5. Reconstructing Sentences With Metadata

The final step is to produce a result by recombining the different constituency nodes and
their links to characters into legible HTML code. This process starts by finding the root
node of a sentence and iteratively recombining the child nodes. To get the original sen-
tence, it suffices to concatenate the values of all the leaf nodes into one sentence. The
original location of whitespaces can be determined using the begin and end indices of the

nodes. The nodes with a link to a character gets a separate that contains RDFa

to indicate that it references a ttrpg:Character and a link to which character. We can

also add a title attribute that allows the user to hover over the word an get more infor-
mation. As an example, the sentence from the previous step would become the following
HTML:

When rendered this becomes:

Beowulf sees Johan on top of the hill.

Note: In the HTML version,
users can hover over the
names of the character to get a
hint box showing the name of
the character and the campaign
it originates from. For example,
when hovering over Beowulf,
the text “Beowulf (Pantheon
Party)” shows up. In PDF, this is
not available, but a screenshot
is shown in Figure 13.

Listing 12:

<p>

<span typeof="ttrpg:Character"

resource="http://pantheonparty.com/beowulf"

title="Beowulf (Pantheon Party)">

 Beowulf

 sees

<span typeof="ttrpg:Character"

resource="http://pantheonparty.com/johan"

title="Johan (Pantheon Party)">

 Johan

 on top of the hill.

</p>

HTML representation of the tagged sentence “Beowulf sees Johan on top of the
hill.” with a title attribute for both characters referenced and a resource tag to link it to the URI of
the character.

Figure 13: Preview of the hint box in HTML
that would be shown when hovering over the
name of a character.

https://thesis.robbevanherck.be/#fig:hover-preview-pdf
https://thesis.robbevanherck.be/#fig:hover-preview-pdf

Chapter 6: Implementation

Overview

This section will explain the technical aspect of the application to implement the steps
designed in the previous chapter. The first section will show how the data was converted

into pieces of iol:Text . The second section will explain the base of the application,

namely semantic.works. Section 3 to section 6 will explain four different services that im-

plement a reasoner that perform a part of the analysis, namely sentence-service,

constituency-tree-service, solid-sync-service and named-entity-recognition-service.

1. Data

To test the application, a set of RPG game logs was needed to use as input for the appli-
cation and check the results. Using existing game logs allows testing how the system would
function on real-world data. This set of logs comes from myself, from friends and even
some from an RPG IRC channel.

All personally identifiable data of the players playing the character was removed before
processing. For the campaigns, permission was asked to use it for data to test the appli-
caion, but not to republish the data. The examples used in this thesis come from cam-
paigns where explicit permission was asked of all the players to use their character and
storyline.

To process the data, different Jupyter[23] notebooks were used for each campaign to
easily process the data in steps and perform checks during the process. As this contains
links to private data, these scripts are not public, but the general idea of how they were pro-
cessed will be explained.

In the end, 9 different campaigns were analyzed, with a total of 62 documents containing
logs. This resulted in 4138 pieces of text that could be processed by the application.

While processing the data, different challenges came up to get the data from their raw
source to the correct RDF format. The rest of this section will highlight three different chal-
lenges that came up. Each subsection will cover one of them, namely the format of the
logs, the language they are written in and their phrasing.

1.1. Format

Almost every GM used a different format to keep logs which made it difficult to find a way
to extract pieces of text from each of the different formats. The rest of this subsection will
describe the formats and how they were processed.

1.1.1. Markdown

Markdown is a plain-text format that was made to create documents that can easily be
turned into HTML documents and are still legible in their source format. In its most basic
form, Markdown documents contain normal text where each paragraph will be shown as is.

It allows adding markup such as italic or bold by surrounding the word with respectively

one or two asterisks, so *this* becomes this. Titles can be inserted, up to 6 levels deep

by adding one or more # before the title. The more are added, the lower the title is. For ex-

ample the title of this subsection is ### Format , as it is 3 levels deep (chapter title, sec-
tion title and subsection title). Markdown also allows links to be specified by using

[text](url) , where a link will be shown with “text” as display text and a link to “url”.
To get text from raw Markdown, it suffices to take the text as is and remove all special

markup characters such as * . Links can be removed using a regular expression. This can-
not be done by removing all brackets, as they may be used in a sentence. Once these are
removed, each paragraph, separated by two newlines, can be processed as a piece of text.

https://thesis.robbevanherck.be/#ref-23
https://thesis.robbevanherck.be/#ref-23

The Markdown documents used to analyze came from many different sources, which in-
troduced slight differences in how they were processed. Some came as raw Markdown files
which just needed to be opened and read. Others were stored on Hackmd.io[24], which re-
quired an HTTP request to get their data, but were otherwise identical to raw files. One
campaign used a GitHub wiki to keep track of their campaign, so the repository had to be
cloned in a folder to get the raw Markdown files. Finally, one campaign used Obsidian[25],
whose format is mostly identical to Markdown, but has some extended syntax that needs to
be removed as well.

1.1.2. MediaWiki

MediaWiki[26] is a system that was originally developed for Wikipedia, but is now used in
many different places. One of the GMs kept their logs on a self-hosted instance of
MediaWiki which also stored information on characters and other related information. This
allows the GM to create links to information pages about a specific subject, so they can
more easily find extra information if needed.

The format of MediaWiki is, just like Markdown, at its basis a plain-text format. It allows

adding links to pages on the same wiki by using [[Subject]] , which would link to the

page named Subject on this wiki. It also allow markup, italic and bold are done by sur-

rounding the text with respectively two or three backticks. For example: ```text``` be-
comes text.

To make this into plain text, a similar approach to markdown was followed by removing
special characters using regular expressions.

1.1.3. Google Documents

Some campaigns kept their logs in a Google document. To query this, an existing Python li-
brary was used that provided helpers for a users login and access to a Google document.
This needed a Google application that had OAuth 2.0 set up and kept the tokens for this in
a secret file.

The login flow asks the user to log in with a Google account. In this case this should be
an account that has access to the document to be analyzed. With a logged in client, the
document can be requested. The library returns the document as a Python object which
can be queried like any other dictionary. To get all the necessary paragraphs, the applica-
tion needs to iterate over everything in the content of the body and check if that piece of
content contains a paragraph. If it is, it needs to check the parts in that paragraph and
combine all text from it.

By using the “textRun” element, the text is retrieved without any markup which removes
the need to strip anything from it to get the final texts.

1.1.4. Webblog

One campaign kept a blog online with their campaign logs. This made processing a bit
more difficult, as the HTML tags were not always consistent. Using the BeautifulSoup[27] li-
brary, the HTML could be parsed and all paragraphs from the page could be extracted.
This mostly worked, but it was still required to filter out titles and other interjections that

https://thesis.robbevanherck.be/#ref-24
https://thesis.robbevanherck.be/#ref-24
https://thesis.robbevanherck.be/#ref-25
https://thesis.robbevanherck.be/#ref-25
https://thesis.robbevanherck.be/#ref-26
https://thesis.robbevanherck.be/#ref-26
https://thesis.robbevanherck.be/#ref-27
https://thesis.robbevanherck.be/#ref-27

were not part of the storyline.

1.2. Language

Some of the campaign logs were written in Dutch as that is the native language of some
of the GMs. While it is theoretically possible to use models that support Dutch, this re-
search focuses on English only, as the thesis itself would be written in English. Therefor,
the texts needed to be translated into English before they could be stored.

To translate the pieces of text to English, a Python library was used that interfaced with
Google Translate. While still imperfect, the translations were good enough to use for further
processing. The library was however fairly inconsistent and would often just return the origi-
nal, Dutch text instead of translating it. It would give no error message, so a manual check
was added to see if the texts were translated or not. After some time it turned out that it
was due to rate limiting on the Google Translate API. It would only allow a certain amount
of requests per hour, so if the application ran into this issue, it waited some time before
retrying. This made the translation step take quite some time.

Besides this, the translation library would often translate a sentence incorrectly. It re-
sulted in a significant loss of quality. For example, names would be translated in strange
ways, such as the name “Heksina”, that would often be translated into “Weksina”, making it
impossible to recognize the original character without manual intervention.

To keep the original text, as well as the translated version, language annotations were
used to indicate the language of the string. For English sentences, only the English sen-

tence was saved using the en language tag, but for Dutch sentences, the original sen-

tence was stored as well with the nl language tag.

1.3. Phrasing

Keeping logs during a session is an intensive task, especially when combined with play-
ing a character or managing a session as GM. Because of this, GMs and players often
choose to not keep logs in as full sentences, but only write some keywords or drop words
from the sentence. This makes it easier to write and people can understand it well enough
in context, but analyzing this becomes a real challenge. Especially constituency tree pars-
ing becomes difficult when the sentence is not a valid sentence. This can easily result in in-
correct parsing and thus produce incorrect results.

2. Semantic.works

The base of the application is the Semantic.works framework[28], which is a framework
that revolves around a system of microservices that interact with a central triple store. Each
of the microservices implements a reasoner that processes the data in the knowledge
graph. This way, services can be reused easier, as they only communicate through the
central database. Semantic.works was formerly named “mu.semte.ch”, so many of the ser-

vices it uses are still using the mu- prefix in their name.

2.1. Semantic.works middleware

The core of Semantic.works
are three services: the identifier,
the dispatcher and the data-
base. These allow services to
communicate and provide a
way to process requests from
the frontend. An overview can
be seen in Figure 14.

2.1.1. Identifier

The entry point to the backend is the identifier, which takes in the request from the frontend
and finds out to which session it belongs by sending and reading a cookie which contains a
unique URI for each session. In most cases, this session corresponds to a browser-tab
from which the user made the request. It attaches the session id to the request using an
HTTP header before sending it to the dispatcher.
2.1.2. Dispatcher

The dispatcher takes a request from the identifier and determines which microservice it
should be forwarded to for processing. This way, different microservices can define an API
endpoint with the same name inside their container, without causing problems. It does so
by matching the request URL to a preset list of paths and their respective microservice.
2.1.3. Database

The database consists of an OpenLink Virtuoso triplestore, which allows services to read
and write data using a SPARQL endpoint. It also supports the usage of different graphs for
storing triples. The database is available to every service and serves as the primary way of

Figure 14:

IDENTIFIER DISPATCHER

SERVICE

TRIPLE

STORE

SERVICE

SERVICESERVICE

Overview of the basic
Semantic.works framework. The identifier
takes in requests from the frontend and
passes them on to the dispatcher, who in turn
forwards it to the right service. Services
mainly communicate through the central triple
store.

https://thesis.robbevanherck.be/#ref-28
https://thesis.robbevanherck.be/#ref-28
https://thesis.robbevanherck.be/#fig:semantic-works-stack
https://thesis.robbevanherck.be/#fig:semantic-works-stack

communication.

2.2. Provided services

Some services are used in many different applications, as they often have similar re-
quirements. Because the Semantic.works stack revolves around reusing services, many

common services are available. This application uses three of these, namely mu-

authorization, delta-notifier and mu-cl-resources.

2.2.1. Mu-authorization

The mu-authorization service sits between the services and the database and adds autho-
rization to the requests. It checks if the user belonging to the session provided by the iden-
tifier has the right to read or write the data requested in the SPARQL query. To allow differ-
ent users to be able to read and write data, the service makes use of different graphs.
When a write occurs, it writes this data to all graphs that correspond to a group that has
read access to this data, so that if a read occurs, it can simply read from the right graph to
return the data that group is allowed to read. A configuration file defines which users can
read and/or write to which graphs.

As this service also provides a SPARQL endpoint at the same endpoint as the database,
services can simply be configured to send their requests to the mu-authorization service in-
stead of to the database directly and, given that they have the correct permissions, can
simply send requests as if they were talking to the database directly.

Mu-authorization also provides a way to have services get notified when a write-request

is made, by sending the changes or deltas to a service that wants to receive those
changes.

2.2.2. Delta-notifier

The delta-notifier is a service that takes the deltas from the mu-authorization service and
forwards them to the interested services. The delta-notifier also allows each service to
specify which deltas they are interested in, so they don’t have to receive all the deltas all
the time. This allows the services to know when something has changed without having to
query the database continuously.

The deltas are sent in JSON format as a list of objects. Each of these objects represents

a change in the data and has two fields, inserts and deletes , which both consist of a
list of objects representing triples that are inserted or deleted respectively. These triples

have three fields subject , predicate and object with as value another object that
follows the specification for how to encode RDF terms from SPARQL[29]. An example is
found in Listing 13

https://thesis.robbevanherck.be/#ref-29
https://thesis.robbevanherck.be/#ref-29
https://thesis.robbevanherck.be/#lst:delta-format
https://thesis.robbevanherck.be/#lst:delta-format

2.2.3. Mu-cl-resources

To make it easier for existing frontend tools to interact with the Semantic.works framework,

mu-cl-resources was created. It provides a way to specify a mapping between the data in
the triple store and a JSON:API[30] endpoint. The developer can specify what the different
resources in the API look like and how these correspond to triples in the database. Mu-cl-
resources will then provide an API that allows all operations to read/write these as objects
and automatically map this to changes in the triple store.

Mappings can be defined using a Lisp and/or JSON configuration. While they provide the
same functionality, this section will be focusing on the JSON version. This version requires
the following fields for each type:

• name : The name of the resource.

• class : A URI describing the type of this resource.

Listing 13:

[

{

"inserts": [

{

"subject": {

"type": "uri",

"value": "http://pantheonparty.com/sahara"

},

"predicate": {

"type": "uri",

"value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

},

"object": {

"type": "uri",

"value": "http://w3id.org/TTRpg#PlayableCharacter"

}

}

],

"deletes": [

{

"subject": {

"type": "uri",

"value": "http://pantheonparty.com/sahara"

},

"predicate": {

"type": "uri",

"value": "http://www.w3.org/1999/02/22-rdf-syntax-ns#type"

},

"object": {

"type": "uri",

"value": "https://dbpedia.org/ontology/desert"

}

}

]

}

]

Example of a delta where the rdf:type of a resource changes.

https://thesis.robbevanherck.be/#ref-30
https://thesis.robbevanherck.be/#ref-30

• attributes : The attributes this object has, each consisting of

◦ type : The datatype of the attribute, such as string or number .

◦ predicate : The URI of the predicate that corresponds to this field.

• relationships : Which links this type has to other objects.

◦ target : The name of the type the relationship links to.

◦ predicate : The URI of the predicate that corresponds to this relationship.

◦ cardinality : The cardinality of the relationship, either one , when there is

only one such relationship for each object or many , when there are multiple.

◦ inverse : Indicates if this relation corresponds to the inverse of predicate .

For example, a mapping for authors and books can be seen in Listing 14 which will map
the data in Listing 15 to Listing 16

Listing 14:

{

"version": "0.1",

"prefixes": {

"schema": "http://schema.org/"

},

"resources": {

"book": {

"name": "book",

"class": "schema:Book",

"attributes": {

"title": { "type": "string", "predicate": "schema:headline" }

},

"relationships": {

"author": {

"target": "author",

"predicate": "schema:author",

"cardinality": "one",

}

}

},

"author": {

"name": "author",

"class": "schema:Person",

"attributes": {

"name": { "type": "string", "predicate": "schema:name" }

}

}

}

}

Example mu-cl-resources configuration describing authors and books.

https://thesis.robbevanherck.be/#lst:book-config
https://thesis.robbevanherck.be/#lst:book-config
https://thesis.robbevanherck.be/#lst:book-ttl
https://thesis.robbevanherck.be/#lst:book-ttl
https://thesis.robbevanherck.be/#lst:book-json
https://thesis.robbevanherck.be/#lst:book-json

Listing 15:

<http://example.com/mybook> rdf:type schema:Book;

schema:headline "My Diary";

schema:author <http://example.com/robbevanherck>.

<http://example.com/robbevanherck> rdf:type schema:Person;

schema:name "Robbe Van Herck".

Example RDF data for books with one book defined with title “My Diary” and one
author with name “Robbe Van Herck”.

Listing 16:

{

"data": {

"attributes": {

"title": "My Diary",

},

"id": "4263c1e6-beb5-417d-8428-24cb2a2d96f0",

"type": "book",

"relationships": {

"author": {

"links": {

"self": "http://example.com/robbevanherck",

}

},

}

},

"links": {

"self": "http://example.com/mybook"

}

}

The RDF-data from above mapped to JSON:API using the configuration described
before.

3. Sentence service

The first service that was implemented for the application was the sentence-service,
which has the simple task of waiting for new pieces of text to be added to the database and
split them up into separate sentences. The task itself is pretty straight-forward, but it serves
as a reminder that reasoners don’t need to be complex to be useful. Also, since it was im-
plemented first, it laid the foundation for how other services would interact with the data-
base, receive deltas, etc.

The service makes use of Semantic.works’ Python template [31], which provides some
helpers like a function to easily perform SPARQL queries to the database and a pre-
configured Flask app. This way, only a file which contains the implementation of the service
needs to be provided and the template will provide the helpers, start up the application, etc.

The service consists of one endpoint, namely /.mu/delta , which is the endpoint that
most Semantic.works services use for receiving deltas from the delta-notifier. When this
endpoint gets a POST request, the service parses the deltas and creates a list of sen-

tences it should analyze. It keeps a list of all the URIs that it knows are of type iol:Text

and also keeps a dictionary that maps URIs to their rdf:value , if they have any. We

have to keep both separately to later match the URIs that have a rdf:value and are

known to have type iol:Text , as these are the texts we will be processing.

We find these by looping over all the inserted triples and checking the predicate. If the

predicate is rdf:type , it checks if the object (and thus the type of the subject) is

iol:Text and if so, it adds it to a list of iol:Text s. If the predicate is rdf:value , it
creates an entry in the dictionary with the URI of the subject as key and the string in the ob-

Listing 17:

function handle_delta(delta) {

text_uris = []

values = {}

for each inserted triple in delta {

if (triple.predicate == "rdf:type" &&

triple.object == "iol:Text") {

text_uris.add(triple.subject)

}

if (triple.predicate == "rdf:value") {

values[triple.subject] = triple.object

}

}

for each uri in text_uris with a value in values {

for each sentence in nltk.sent_tokenize(value) {

store sentence

}

}

}

Pseudo code overview of the sentence-service.

https://thesis.robbevanherck.be/#ref-31
https://thesis.robbevanherck.be/#ref-31

ject as value.

The actual separation of sentences is done with the Python library NLTK [32]. More

specifically, the sent_tokenize function is used, which splits up the text into sentences.
Each of these sentences will then be saved to the database in the correct format. To make

it accessible by mu-cl-resources, a mu:uuid needs to be added, which provides a unique
identifier.

https://thesis.robbevanherck.be/#ref-32
https://thesis.robbevanherck.be/#ref-32

4. Constituency Tree Service

The second service in the application is the constituency-tree-service, which takes sen-
tences in the database and performs constituency tree parsing on them.

Like the sentence-service, constituency-tree-service is also based on the mu-python-

template and contains one endpoint /.mu/delta to receive delta notifications.

The sentences are analyzed using CoreNLP[33], which is a Java program that can do
many NLP tasks, including parts of speech tagging and constituency tree parsing. Because
the constituency-tree-service is written in Python and CoreNLP is written in Java, there is
no way to directly interface with it. However, NLTK provides a helper class which allows us-
ing the CoreNLP tools from within Python using its API.

To make sure the CoreNLP server works on every system, a Docker container running
an instance of CoreNLP is added to the system that does not interact with the database or
any of the middleware services directly, but services can choose to talk to the server if they
need CoreNLP analysis.

https://thesis.robbevanherck.be/#ref-33
https://thesis.robbevanherck.be/#ref-33

Once the application starts up, it makes a connection to the CoreNLP server and waits

for delta notifications. Similar to sentence-service, it finds all URIs that have a rdf:type

of dul:Sentence and have a rdf:value . All of these get fed through the parser using

NLTKs CoreNLPParser.parse function. This returns the parsing as a dict.

The communication with the database goes through rdflib , which provides a way to
use the same functions as for in-memory graphs, but with the data being stored automati-

Listing 18:

function handle_delta(delta) {

database_graph = connect_to_database()

sentence_uris = []

values = {}

for each inserted triple in delta {

if (triple.predicate == "rdf:type" &&

triple.object == "dul:Sentence") {

sentence_uris.add(triple.subject)

}

if (triple.predicate == "rdf:value") {

values[triple.subject] = triple.object

}

}

for each uri in sentence_uris with a value in values {

tree = corenlp.parse(value)

store_recursive(database_graph, tree)

}

}

function store_recursive(database_graph, tree, start_index=0) {

database_graph.add_triple(tree, "rdf:type", "nif:String")

if !database_graph.has_uuid(tree) {

database_graph.add_triple(tree, "mu:uuid", generate_uuid())

}

current_character = start_index

if tree.has_children {

for child in tree.children {

while (current_character.is_whitespace()) {

current_character += 1

}

characters_processed = store_recursive(database_graph, tree, current_character

current_character += characters_processed

}

value = substring of sentence from start_index to current_character

} else {

value = tree.value

}

pos_tag_uri = lookup_pos_tag_uri(tree.pos_tag)

store current node with start, end, pos_tag_uri and value

}

Pseudo code overview of the constituency-tree-service.

cally to a SPARQL triplestore. The connection to the store is opened right after analyzing
the sentence and passed on to each function call so the calculated data can be saved im-
mediately.

The way the constituency tree is processed uses a recursive approach that starts by pro-
cessing the root node and process the rest of the tree down from there.

The first thing that needs to be done is adding the type of nif:String to the node, if

the node already exists it suffices to add a triple with predicate rdf:type and object

nif:String , otherwise a uuid needs to be generated and stored so mu-cl-resources

recognizes it. The rdf:type triple gets stored first as this way, mu-authorization knows
its type and knows that the permissions for it allow the application to write these triples.
Otherwise, all triples before the type would be rejected a it doesn’t know that it is a

nif:String , which can be writen to without special authorization.

After that, a check is performed to see if the node has children, if this is the case, the
child is processed in the same way. Keeping a running count of how many characters are
processed allows determining what the start and end indices are for each child node. It
also makes it possible to find out which part of the sentence this node covers. Before pro-
cessing a child node, white space is skipped, otherwise spaces would be considered part
of a word. Using a recursive call, each child node gets processed which returns the number
of characters processed and the URI where the child was stored. With this,

nif:beginIndex is known to be of characters processed so far and the

nif:endIndex is the nif:beginIndex plus the number of characters covered by the

child node, minus 1 to be an inclusive index. The nif:superString for each child node

is the current node and the child node is a nif:subString of the current node.

Finally, the POS tag is stored using an OLiA tag, using a mapping from CoreNLP labels
to OLiA URIs. CoreNLP uses Penn Treebank labels, which OLiA supports. For this, a
Python dict with these mappings was set up which contains the 58 entries that occur in the
dataset, which should cover the majority of English sentences.

Penn Treebank labels can also contain function tags, for example, a verb might be voca-

tive, which would result in the tag VB-VOC , where VB indicates it is a verb and -VOC that
it is vocative. In this application, this function tag is not stored as it not necessary further
down the line, so it is stripped from each tag by splitting on the character “-“ and taking the
first group. If future applications do want to use this tag, it could be added by checking the
other groups after splitting and changing which tag to give depending on all values instead
of just the first.

5. Solid Sync Service

To make processing data from the users Solid pod more easy, solid-sync-service was
created. This service allows data to be mirrored from a Solid pod in the database, so it can
be queried like data that is already in the database. Right now, it supports mirroring one
pod, but it is possible to expand this to include multiple pods and things like per-pod autho-
rization.

The service currently only works with Community Solid Server (CSS) as this version al-
lows the use of client credentials. These allow a user of a Solid pod to create a set of to-
kens that can authenticate the user without having to store their username and password in
the app. This is especially useful for backend applications that don’t have the option to
show the user the login prompt in a browser for authentication. These tokens are imple-
mented as a temporary measure to allow clients to connect without needing to know the
users plain-text password and might be changed in the future.

The user can request a new token by sending a POST request to the credentials path.
This path can be found by interacting with the identity provider (IDP) and looking at the
URIs in the response. The user should provide their login details once, as well as the name
of the token. As the user can do this manually, the service that uses the token doesn’t need
the login credentials of the users account. The user then passes the returned token id and
token secret to the application so it can use it. They can also decide to delete the token to
revoke access to the application by performing a DELETE request.

Once the token id and secret are known to the application, it can request an access to-
ken, which allows the application to perform authenticated requests for a period of time.
The service can do this by sending a POST request to the token endpoint with the token id

and secret in an Authorization: Basic header and a DPoP[34] key. The token end-

point can be found in /.well-known/openid-configuration .

With this the access token, requests can be made using the same DPoP key as above

and the token. The Solid library solid-client-authn-core provides helpers for both DPoP gen-
eration and creating functions for authenticated requests.

As the Solid authentication library is written in JavaScript, this service is as well. The

Docker image is based on mu-javascript-template , which is similar to

mu-python-template , but for JavaScript services instead of Python.

The service has one endpoint /update , which can be POSTed to. If a POST request
arrives, the service will recursively query its preconfigured pod and store the data in the
database.

The source code of the service is split up across three files

• app.js : Contains the entrypoint code, sets up and checks the environment.

https://thesis.robbevanherck.be/#ref-34
https://thesis.robbevanherck.be/#ref-34

• solid.js : Contains all code for interacting with the Solid pod, exports the function

getPod .

• sparql.js : Contains all code for writing data to a SPARQL store, exports the func-

tion writeToStore

5.1. app.js

The first file, app.js initializes the environment using dotenv [35], which allows the

creation of a file named .env in the root of the project that contains a set of environment
variables for configuring the application. This way, it is also possible to specify the configu-
ration using environment variables for deployment, when there might not be an option to

create a .env file.

After configuring the environment variables, a check that all required environment vari-

ables are present is performed in the function checkEnv . If any of these variables are not
present, it throws an error during startup. The required variables are:

• POD_BASE : The base URI of the Solid pod, also used to find IDP endpoints.

• POD_NAME : The name of the pod to synchronize.

• TOKEN_ID : The id of the client token.

• TOKEN_SECRET : The secret of the client token.

Every time a request on /update comes in, the function update gets called, which

constructs the URI of the Solid pod by concatenating the POD_BASE and POD_NAME . It

also checks if the POD_BASE ends with a slash and adds a slash if necessary. With this, it

gets the data in the pod using getPod and writes it to the database using

writeToStore .

5.2. solid.js

Listing 19:

function on_start() {

dotenv.setup()

if not all required environment vars are set {

error()

}

}

function update() {

pod_data = solid.getPod()

sparql.writeToStore(pod_data)

}

Pseudo code overview of the file app.js in solid-sync-service.

https://thesis.robbevanherck.be/#ref-35
https://thesis.robbevanherck.be/#ref-35

In solid.js , there is one entry function, namely getPod , which performs a depth-

first search through the pod and keeps all the results in an rdflib.graph . It does this by
keeping a list of visited URIs and a list of URIs to visit. The former starts empty, the latter
contains just the URI of the pod. It then repeatedly takes the first URI of the URIs to visit,

adds it to the list of visited URIs and requests its content using getContainer . It then
checks the content of the container if it contains more resources by finding all URIs that

match (?currentResourceURI, ldp:contains, ?otherResourceURI) . It then
adds them to the list of URIs to visit if it is not in the list of visited URIs and if it’s not already
in the list of URIs to visit. It repeats this until the list of URIs to visit is empty.

The function getContainer takes a URI and requests the data on that URI using an

authenticated fetch created by the getAuthenticatedFetch function. If the response is

not 200 OK , it throws an error indicating which status code it got and on which URI. This
can happen if a user is not authorized to read a resource, in which case the status code

would be 401 Unauthorized .

The function getAuthenticatedFetch will perform the steps described in the Design

section, by using the helper functions provided by solid-client-authn-core .

5.3. sparql.js

Listing 20:

function getPod() {

result_graph = rdflib.graph()

visited_uris = []

uris_to_visit = []

while uris_to_visit is not empty {

current_uri = uris_to_visit.remove_one()

visited_uris.add(current_uri)

container_data = getContainer(current_uri)

add container_data to result_graph

for uri in container_data.find(current_uri, "ldp:contains") {

if uri not in visited_uris and uri not in uris_to_visit {

uris_to_visit.add(uri)

}

}

}

return result_graph

}

Pseudo code overview of the file solid.js in solid-sync-service.

The sparql.js file contains two functions. The first is sparqlify , which takes one
rdflib node and transforms it into a string that can be used in a SPARQL query. For this it
first checks if it is a named node, in which case it can simply return it as a URI using

sparqlEscapeUri . If it is a Literal, it has to check which type of literal and use the corre-

sponding sparqlEscape function. The second is writeToStore , which takes a list of
quads and creates and executes a SPARQL query to insert them.

Using this function, a SPARQL query can be created that iterates over each quad in the

graph and create a query from those. This is done by creating a different GRAPH block for

each quad following the format GRAPH ?g { ?s ?p ?o. } where ?g is the URI of the

graph, ?s the subject, ?p the predicate and ?o the object. This is done for each quad

and they are joined using newlines and wrap them with INSERT DATA { and } , result-
ing in a valid SPARQL query.

While this is not a very efficient approach, the JavaScript implementation of rdflib does
not provide an alternative approach so this method was chosen.

Listing 21:

function writeToStore(quads) {

query = "INSERT DATA {"

for quad in quads {

query += "GRAPH {} { {} {} {} . }".format(

sparqlify(quad.graph),

sparqlify(quad.subject),

sparqlify(quad.predicate),

sparqlify(quad.object)

)

}

query += "}"

query.execute()

}

function sparqlify(node) {

if node is a named node {

return helpers.sparqlEscapeUri(node.uri)

} else {

if node.type is "string" {

return helpers.sparqlEscapeString(node.value)

} else if node.type is "number" {

return helpers.sparqlEscapeString(node.value)

}

...

}

}

Pseudo code overview of the file sparql.js in solid-sync-service.

6. Named Entity Recognition Service

The service that performs the actual named entity recognition is the named-entity-

recognition-service. This service performs a very basic named entity recognition. If it finds
a match, it adds a link from the constituency node to the character to know who it refers to.

This service serves as an example on how complex analyses can be performed in a sim-
ple way, once all the required steps are set up. This shown by the fact that the entire ser-
vice mainly consists of one SPARQL query.

The implementation of this service is very basic. It uses mu-python-template and added

an endpoint /annotate that performs the SPARQL query in Listing 22.

This query first tries to find all the nodes that have the nif:posTag of

olia:ProperNoun . Then, it finds out which string they represent using

nif:isString . After that, it finds all ttrpg:Character s that have the string as

foaf:name . Once these nodes and characters are found, a link between them is added

using itsrdf:taIdentRef .

Listing 22:

PREFIX ttrpg: <https://w3id.org/TTRpg#>

PREFIX olia: <http://purl.org/olia/olia.owl#>

PREFIX itsrdf: <http://www.w3.org/2005/11/its/rdf#>

PREFIX nif: <http://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core#>

PREFIX foaf: <http://xmlns.com/foaf/0.1/>

INSERT {

GRAPH ?g {

?node itsrdf:taIdentRef ?character .

}

}

WHERE {

GRAPH ?g {

?node nif:posTag olia:ProperNoun ;

nif:isString ?characterName .

?character a ttrpg:Character ;

foaf:name ?characterName

}

}

SPARQL query to perform the basic named entity recognition.

https://thesis.robbevanherck.be/#lst:ner-sparql-query-2
https://thesis.robbevanherck.be/#lst:ner-sparql-query-2

Chapter 7: Results

Overview

This section will first explain how the application was set up and configured. After that it
will show how each step performed by performing some analyses and timings. All timings
were run on a laptop with 8GB RAM, 10GB swap and an Intel(R) Core(TM) i7-9750H CPU
@ 2.60GHz

The source and configuration files of all the services and the system as a whole can be
found in GitHub repositories under the MIT license. This way, anyone can contribute to the
system or run their own instance.

The main repository for the application is on https://github.com/Robbe7730/app-gelinkt-
rollenspelen, this contains the docker-compose setup for the entire stack, as well as config-
uration files for these services. Each service also has its own repository:

• Sentence Service: https://github.com/Robbe7730/sentence-service

• Constituency Tree Service: https://github.com/Robbe7730/constituency-tree-service

• Named Entity Recognition Service: https://github.com/Robbe7730/named-entity-
recognition-service

• Solid Sync Service: https://github.com/Robbe7730/solid-sync-service

https://github.com/Robbe7730/app-gelinkt-rollenspelen
https://github.com/Robbe7730/app-gelinkt-rollenspelen
https://github.com/Robbe7730/app-gelinkt-rollenspelen
https://github.com/Robbe7730/app-gelinkt-rollenspelen
https://github.com/Robbe7730/sentence-service
https://github.com/Robbe7730/sentence-service
https://github.com/Robbe7730/constituency-tree-service
https://github.com/Robbe7730/constituency-tree-service
https://github.com/Robbe7730/named-entity-recognition-service
https://github.com/Robbe7730/named-entity-recognition-service
https://github.com/Robbe7730/named-entity-recognition-service
https://github.com/Robbe7730/named-entity-recognition-service
https://github.com/Robbe7730/solid-sync-service
https://github.com/Robbe7730/solid-sync-service

1. Configuration

This section will explain the configuration of the services that make up the application. As
the entire application is open-source, this section will only give a higher-level overview of
each of the configuration parameters.

An overview of all the used services and their interactions can be seen in Figure 15.

The middleware services identifier and dispatcher are in the same place as they are in
every Semantic.works stack. To get mu-authorization working, the links to the triplestore
have been replaced with links to mu-authorization, which in turn talks to the triplestore. As
described earlier, this does not affect the services in any way because mu-authorization
uses the same endpoint for SPARQL queries as the triple store. The mu-authorization ser-
vice also talks to the delta-notifier, who passes its deltas to the sentence-service and the
constituency-tree-service. The constituency-tree-service also talks to a separate corenlp
container and the solid-sync-service needs access to the Solid pod that it should sync.

The rest of this section will give an overview of how some of the services were config-
ured, more specifically, it will explain the models for mu-cl-resources and the routes for the
dispatcher.

1.1. Resources

This configuration defines which models exist and how they are stored in as RDF. There

are a total of 5 models defined, namely text , sentence , constituency-node ,

character and campaign .

Figure 15:

identifier dispatcher

sentence-

service

mu-cl-

resources

solid-sync-

service

constituency-

tree-service

mu-

authorization
triplestoredelta-notifier

corenlp

named-entity-

recognition-

service

Overview of the application and its services. Each block
represents a service and an arrow indicates an interaction from one service
to the other. Requests from the frontend enter the system from the identifier.

https://thesis.robbevanherck.be/#fig:application-stack-overview
https://thesis.robbevanherck.be/#fig:application-stack-overview

1.1.1. Text

This model defines a piece of iol:Text , it has one attribute value , which is a

language-string-set that uses the rdf:value predicate. This means that there are multi-

ple string values for this attribute, each with a language tag. The text also has a relation

to sentence , namely which components it has. This is done with the

iol:hasComponent relation.
1.1.2. Sentence

Similar to text , this model defines a iol:Sentence with a single string value named

value using the rdf:value predicate. The inverse of the sentence relation in text

is represented here under the name text .
1.1.3. Constituency-Node

The most complex model is the constituency-node model. It represents each node in

the constituency trees using type nif:String . It has the following attributes:

• begin-index using nif:beginIndex : The start of the string in its super-string.

• end-index using nif:endIndex : The end of the string in its super-string.

• pos-tag using nif:posTag : The part of speech tag for this node.

• is-string using nif:isString : The value this node represents.

It also has three relations, namely:

• sub-string using nif:subString : Relation to zero or more

constituency-node that are children of this node.

• super-string using nif:superString : Relation to zero or one

constituency-node that are the parent of this node.

• references-character using itsrdf:taIdentRef : Relation to zero or one

character that this node references, according to the named entity recognition.

1.1.4. Character

The character model represents a single ttrpg:Character . Currently, it only mod-
els the characters name as that is the only value in use. The name of the character is mod-

eled using foaf:name and is a string value. As these resource come from an external

source, we also tell mu-cl-resources to include the uri in the response using the

include-uri feature. This way, we can link to the character in the Solid pod, even if the
data itself comes from the local database.
1.1.5. Campaign

Similar to character , ttrpg:Campaign s are also modeled. Their model is pretty

much identical to character , as we only use the name of the campaign.

1.2. Dispatcher

The dispatcher has a configuration that specifies which service a request should be for-
warded to.

First, the routes that should be forwarded to mu-cl-resources are specified, otherwise a

frontend would not be able to request this data. These endpoints are:

• /sentences

• /texts

• /constituency-nodes

• /characters

• /campaigns

After this, every service that has an endpoint that should be public is specified. Each of
these routes are forwarded to the corresponding service. These endpoints are:

• /visualize

• /sentence-service

• /constituency-tree-service

• /named-entity-recognition-service

• /solid-sync-service

All other requests will return a 404 Not Found with message “Route not found. See
config/dispatcher.ex”.

2. Results

This section will give an indication how well each step in the process performed. It will
give examples of what went well and what went wrong and why.

2.1. Extracting text from files

Due to the complexity of this step, this was a very manual task that required a lot of fine-
tuning and experimenting. Every format came with its own difficulties. While the plain-text
formats such as Markdown were easier to read, stripping the special characters from them
was more difficult. On the other hand, the Google Documents were harder to get access to,
but once this was done the data was pretty much already in plain-text format without spe-
cial characters.

The fact that the Python library used was unstable and would often crash without any in-
dication why did not help either. The translations were also not always correct. For exam-
ple, the sentence “Hij komt wel tot het inzicht dat het geluid een val is” is translated as “He
does come to the insight that the sound is a fall”, but it would be more correctly translated
as “He realizes that the sound is a trap”. The library would also often add or remove white-
space, which would lead to multiple sentences being combined into one because the space
after the period was removed.

The mistake that had the most impact on the results of the application was the fact that it
sometimes mistranslated names. For example, it would translate the name “Heksina” as
“Weksina” most of the time, which makes recognizing this name nearly impossible.

When manually inspecting 100 texts, all of them had their special characters stripped
correctly, 76 of them were translated correctly and 24 were translated incorrectly.

2.2. Extracting sentences from text

This step consisted of two SPARQL queries and some Python processing. First, all the

iol:Text s were extracted from the database, then their values were analyzed using

NLTKs sent_tokenize function and the resulting sentences were stored back in the
database.

The main difficulty was ill-formed sentences. For example, when the sentences did not
have a space after their final period, it would see them as one long sentence.

Extracting the 8212 sentences from the 4138 pieces of text took about 1 minute. This is
an average speed of around 69 texts per second. Manually inspecting 100 texts showed
that all of them were split into sentences correctly.

2.3. Constituency parsing

Constituency parsing was done with CoreNLP, which is a well-known and often used li-
brary for this job. Because of this, most of the sentences were parsed correctly. For exam-
ple, the sentence “You shake them out” gets parsed to the constituency tree in Figure 16.

https://thesis.robbevanherck.be/#fig:constituency-tree-correct
https://thesis.robbevanherck.be/#fig:constituency-tree-correct

This constituency tree can be
manually verified to be correct,
but for larger constituency
trees, this process becomes
harder as more complex struc-
tures can occur.

Where CoreNLP has more
trouble is in sentences where
punctuation is missing or sen-
tences are ill-formed. For exam-
ple, the sentence “It’s ice cold.”
is mostly correct, but the cor-
rect spelling is “ice-cold”, which
makes CoreNLP parse that
group as a noun phrase instead
of an adjective phrase and thus
change the interpretation of the sentence. Both constituency trees can be seen in Figure
17.

During testing, the expected time to process all the sentence would be over 5 hours, so a
change was made to constituency-tree-service to use 12 threads instead of just 1, which
reduced the processing time to 1 hour and 11 minutes and resulted in 228055 nodes. The
service failed to process 399 sentences due to various reasons, mainly if they were not
sentences at all, such as YouTube links or emoji. This is an average speed of 1.83 sen-
tences and 53.5 nodes per second.

2.4. Recognizing entities

Figure 16:

S

NP VP

SFPPP

You

V NP P

shake

PP

them

P

out .

Constituency tree of the sentence
“You shake them out.”

Figure 17:

S

NP VP

SFP

PP

It

V NP

's

N N

ice cold .

S

NP VP SFP

PP

It

V AP

is

N H N

ice - cold .

Constituency tree of the incorrect sentence “It’s ice cold.” and the
correct version “It’s ice-cold.”. The main difference is the AP (adjective
phrase) tag instead of the NP (noun phrase) tag.

https://thesis.robbevanherck.be/#fig:constituency-tree-ice-cold
https://thesis.robbevanherck.be/#fig:constituency-tree-ice-cold
https://thesis.robbevanherck.be/#fig:constituency-tree-ice-cold
https://thesis.robbevanherck.be/#fig:constituency-tree-ice-cold

For any correctly tagged constituency tree, the named entity recognition service can cor-
rectly extract all names of characters that occur. Even when the constituency tree is not en-
tirely correct but the names are recognized as proper nouns or noun phrases it will still cor-
rectly tag the character. In the tests, it was able to extract every occurence of a character
from the 3 campaigns that had their data in RDF available and tag it correctly, resulting in
1451 tagged nodes. Mirroring the data from a Solid pod took 52 seconds and running the
NER took 8 seconds.

Chapter 8: Conclusion and Future Work

1. Conclusion

This section will draw some conclusions from the results of the steps described above
and compare them to what was expected. Finally, it will also evaluate the application as a
whole.

1.1. Evaluating in Steps

The first step where the text was extracted from existing files and if needed, translated
was the step that performed the worst, mainly due to translation errors. As stated in
Subsection 7.2.1, about 24% of the sentences that were originally in Dutch were incorrectly
translated to the point where the meaning was changed. This makes the rest of the analy-
sis less accurate, so we will evaluate the next steps in a way that makes this inconsistency
less relevant. It should also be noted that this step will be irrelevant in the ideal vision of the
project, as the texts would be inserted in the system directly.

The sentence extraction-step was also able to process all 4138 texts in less then 1
minute and a manual inspection found no sentences that were split incorrectly.

The constituency parsing was not able to process each sentence, mainly due to unex-
pected characters in the sentences. Out of the 8212 sentences, only 399 were not able to
be processed. Inspecting the failed sentences revealed that the most common culprit was
the use of incorrect symbols, such as unicode or invalid punctuation.

Named entity recognition performed its analysis in less then 10 seconds and was able to
find 1451 nodes. It did not miss a single occurrence of a characters name in all the texts,
which means that both the constituency parsing and the NER work reliably.

All the steps combined result in a system that works very reliably and produces data in a
way that future additions can reuse and build on.

1.2. Evaluating as a whole

The total runtime of the application was 1 hour and 13 minutes for over 4000 texts, which
brings the average to around 1 second per piece of text. In a real application, this is a per-
fectly reasonable time to wait, especially since the data would be analyzed in the back-
ground, causing no delay to the user while typing.

The original goal of the project was to go a step further and use the constituency trees in
combination with VerbNet[36] to extract events from them. While researching and imple-
menting however, it became clear that even though the idea had potential, it would be
harden than expected to implement in time due to the complexity of the idea. The decision
was made to focus on only the NER to prove that the system was viable. The idea is de-
scribed more in Subsection 8.2.1.

https://thesis.robbevanherck.be/#h3:results/extracting-text-from-files
https://thesis.robbevanherck.be/#h3:results/extracting-text-from-files
https://thesis.robbevanherck.be/#ref-36
https://thesis.robbevanherck.be/#ref-36
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/event-extraction-with-verbnet
https://thesis.robbevanherck.be/#h3:conclusion-and-future-work/event-extraction-with-verbnet

Originally, the proof of concept would include a frontend where the user could enter text
in an online editor that would send the texts to the backend for analysis and provide a vis-
ual indication of the added semantics. This idea was not realized as using an editor that
supports RDFa as well as storing the documents in RDF turned out to be more complex
than expected.

Even though some steps were not realized, the system definitely shows potential. Every
reasoner adds data that is reliable, which leads to a decent result and shows that providing
data in a reusable, open and standardized way can provide major benefits to RPG players.

2. Future work

This thesis was also meant to provide the basis of a system that can be expanded on, so
the rest of this chapter will describe some examples of services that could be implemented
or applications that can make use of the data provided by them.

2.1. Event Extraction With VerbNet

VerbNet[37] is a lexicon containing descriptions of many English verbs and their relation.
It groups verbs into syntactic frames, which are a collection of verbs that share both se-
mantic and syntactic features. Every verb class has so-called surface realizations, that indi-
cate how this verb is used. For each constituency node, it indicates what semantic meaning
it has to the verb. For example, the verb “approach” belongs to the frame of “escape”, more
specifically, to the subclass “escape-51.1-1-2” which also contains the verb “enter”. It has a
surface realization of “NP V NP” where the first noun phrase is the theme and the second
noun phrase the destination. For example in the sentence “Ronald and Vincent approach
the castle”, the noun phrase “Ronald and Vincent” is the theme of the action, the thing in
motion and “the castle” is the destination.

With these abstract representation of the verbs, we can extract events from the logs and
automatically create a summary of sessions[38] or combine logs from different players into
one shared log. The latter of which was originally intended to be part of this thesis, but was
cut due to time constraints and unexpected difficulties.

This service could reuse the constituency trees produced by the constituency tree ser-
vice and add tags to the nodes, just like the named entity recognition service did. Another
service could then perform the combination or summarization.

2.2. Live Tagging

In the current state, the applications requires text to be inserted manually before it can be
analyzed. In an ideal case, this would be done by having the user type their logs in a tailor-
made editor that can talk to the backend automatically. This would allow the user to confirm
or deny certain tags, which would reduce the number of incorrect tags significantly.

This editor would also allow the user to store their data as structured documents instead
of separate texts. IOLite has classes and predicates that allow the representation of full
documents in RDF, which could easily be plugged into the current system. Ideally, the doc-
ument would be stored in the users Solid pod, to allow them to control who can and cannot
access the logs.

2.3. Multiple Campaigns in One World

With this technology, it would be possible for two entirely separate campaigns to take
place in the same world. The GMs could use data from both campaigns, which would lead
to interesting story elements, where one party may help a village where the people are
starving to get more food, but when the next party arrives, there has been a revolution and
the whole village is now too industrial.

https://thesis.robbevanherck.be/#ref-37
https://thesis.robbevanherck.be/#ref-37
https://thesis.robbevanherck.be/#ref-38
https://thesis.robbevanherck.be/#ref-38

Using a system as proposed in this thesis would allow both campaigns to use their own
set of tools, independently of one another but still be able to share the data.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Bibliography

Y. Wilks and C. Brewster, “Natural Language Processing as a Foundation of the

Semantic Web,” Foundations and Trends® in Web Science, vol. 1, Jan. 2009, doi:
10.1561/1800000002.

D. Maynard, K. Bontcheva, and I. Augenstein, “Natural Language Processing for the

Semantic Web,” Synthesis Lectures on the Semantic Web: Theory and Technology, vol.
6, no. 2, pp. 1–194, Dec. 2016, doi: 10.2200/S00741ED1V01Y201611WBE015.

J. L. Martinez-Rodriguez, A. Hogan, and I. Lopez-Arevalo, “Information Extraction

Meets the Semantic Web: A Survey,” Semantic Web, vol. 11, no. 2, pp. 255–335, Feb.
2020, doi: 10.3233/SW-180333.

S. Hellmann, J. Lehmann, S. Auer, and M. Brümmer, “Integrating NLP Using Linked

Data,” in Advanced Information Systems Engineering, vol. 7908, C. Salinesi, M. C.
Norrie, and Ó. Pastor, Eds. Springer Berlin Heidelberg, 2013, pp. 98–113. doi:
10.1007/978-3-642-41338-4_7.

A. Gangemi, V. Presutti, D. Reforgiato Recupero, A. G. Nuzzolese, F. Draicchio, and M.

Mongiovì, “Semantic Web Machine Reading with FRED,” Semantic Web, vol. 8, no. 6,
pp. 873–893, Aug. 2017, doi: 10.3233/SW-160240.

I. Augenstein, S. Padó, and S. Rudolph, “LODifier: Generating Linked Data from

Unstructured Text,” in The Semantic Web: Research and Applications, 2012, pp.
210–224. doi: 10.1007/978-3-642-30284-8_21.

K. K. Bowden, J. Wu, S. Oraby, A. Misra, and M. Walker, “SlugNERDS: A Named Entity
Recognition Tool for Open Domain Dialogue Systems,” no. arXiv:1805.03784. arXiv, May
09, 2018. Available: http://arxiv.org/abs/1805.03784

“Xml-Dev - RE: [Xml-Dev] Beyond Ontologies.” Available: http://lists.xml.org/archives
/xml-dev/200310/msg00269.html

J. D. Gan, “[Rdfweb-Dev] Re: FOAF and MUDs.” Wed May 12 19:24:13 UTC 2004.
Available: https://lists.foaf-project.org/pipermail/foaf-dev/2004-May/007369.html

“FOAF Vocabulary Specification.” Available: http://xmlns.com/foaf/spec/
“TTRpg/TTRpg.Ttl at Master · Rwambacq/TTRpg.” Available: https://github.com

/rwambacq/TTRpg/blob/master/TTRpg.ttl
“Dungeons & Dragons | Official Home of the World’s Greatest Roleplaying Game.”

D&D Official | Dungeons & Dragons. Available: https://dnd.wizards.com//
“Turtle - Terse RDF Triple Language.” Available: https://www.w3.org/TeamSubmission

/turtle/
“HTML Standard.” Available: https://html.spec.whatwg.org/
“RDFa.” Available: https://rdfa.info/
“SPARQL 1.1 Query Language.” Available: https://www.w3.org/TR/sparql11-query/
“IOLite Ontology.” Available: http://www.ontologydesignpatterns.org/ont/dul

/IOLite.owl#
“Ontology:DOLCE+DnS Ultralite - Odp.” Available: http://ontologydesignpatterns.org

/wiki/Ontology:DOLCE%2BDnS_Ultralite
“NIF 2.0 Core Ontology.” Available: https://persistence.uni-leipzig.org/nlp2rdf

http://arxiv.org/abs/1805.03784
http://arxiv.org/abs/1805.03784
http://lists.xml.org/archives/xml-dev/200310/msg00269.html
http://lists.xml.org/archives/xml-dev/200310/msg00269.html
http://lists.xml.org/archives/xml-dev/200310/msg00269.html
http://lists.xml.org/archives/xml-dev/200310/msg00269.html
https://lists.foaf-project.org/pipermail/foaf-dev/2004-May/007369.html
https://lists.foaf-project.org/pipermail/foaf-dev/2004-May/007369.html
http://xmlns.com/foaf/spec/
http://xmlns.com/foaf/spec/
https://github.com/rwambacq/TTRpg/blob/master/TTRpg.ttl
https://github.com/rwambacq/TTRpg/blob/master/TTRpg.ttl
https://github.com/rwambacq/TTRpg/blob/master/TTRpg.ttl
https://github.com/rwambacq/TTRpg/blob/master/TTRpg.ttl
https://dnd.wizards.com//
https://dnd.wizards.com//
https://www.w3.org/TeamSubmission/turtle/
https://www.w3.org/TeamSubmission/turtle/
https://www.w3.org/TeamSubmission/turtle/
https://www.w3.org/TeamSubmission/turtle/
https://html.spec.whatwg.org/
https://html.spec.whatwg.org/
https://rdfa.info/
https://rdfa.info/
https://www.w3.org/TR/sparql11-query/
https://www.w3.org/TR/sparql11-query/
http://www.ontologydesignpatterns.org/ont/dul/IOLite.owl#
http://www.ontologydesignpatterns.org/ont/dul/IOLite.owl#
http://www.ontologydesignpatterns.org/ont/dul/IOLite.owl#
http://www.ontologydesignpatterns.org/ont/dul/IOLite.owl#
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite
http://ontologydesignpatterns.org/wiki/Ontology:DOLCE%2BDnS_Ultralite
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html#d4e948
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html#d4e948

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

/ontologies/nif-core/nif-core.html#d4e948
C. Chiarcos and M. Sukhareva, “OLiA – Ontologies of Linguistic Annotation,”

Semantic Web, vol. 6, no. 4, pp. 379–386, Aug. 2015, doi: 10.3233/SW-140167.
“ITS 2.0 / RDF Ontology.” Available: https://www.w3.org/2005/11/its/rdf-content/its-

rdf.html
“Internationalization Tag Set (ITS) Version 2.0.” Available: https://www.w3.org

/TR/its20/
“Project Jupyter.” Available: https://jupyter.org
“HackMD - Collaborative Markdown Knowledge Base.” HackMD. Available:

https://hackmd.procore.com
“Obsidian.” Available: https://obsidian.md/
“MediaWiki.” Available: https://www.mediawiki.org/wiki/MediaWiki
“Beautiful Soup: We Called Him Tortoise Because He Taught Us.” Available:

https://www.crummy.com/software/BeautifulSoup/#Download
A. Versteden and E. Pauwels, “State-of-the-art Web Applications using Microservices

and Linked Data,” Zenodo, Apr. 27, 2016. doi: 10.5281/zenodo.1233427.
“SPARQL 1.1 Query Results JSON Format.” Available: https://www.w3.org

/TR/sparql11-results-json/#select-encode-terms
“JSON:API — A Specification for Building APIs in JSON.” Available: https://json-

api.org/
“Mu-Semtech/Mu-Python-Template: Template for Running Python/Flask

Microservices.” Available: https://github.com/mu-semtech/mu-python-template
“NLTK :: Natural Language Toolkit.” Available: https://www.nltk.org/
“CoreNLP.” CoreNLP. Available: https://stanfordnlp.github.io/CoreNLP/
D. Fett, B. Campbell, J. Bradley, T. Lodderstedt, M. Jones, and D. Waite, “OAuth 2.0

Demonstrating Proof-of-Possession at the Application Layer (DPoP),” Internet
Engineering Task Force, Internet Draft draft-ietf-oauth-dpop-08, May 2022. Available:
https://datatracker.ietf.org/doc/draft-ietf-oauth-dpop

motdotla, “The Worldwide Standard for Securing Environment Variables.” Dotenv.
Available: https://dotenv.org/

K. K. Schuler, “VerbNet: A Broad-Coverage, Comprehensive Verb Lexicon,” University
of Pennsylvania, 2005. Available: https://repository.upenn.edu/dissertations/AAI3179808

M. Green, O. Hargraves, C. Bonial, J. Chen, L. Clark, and M. Palmer,

“VerbNet/OntoNotes-Based Sense Annotation,” in Handbook of Linguistic Annotation, N.
Ide and J. Pustejovsky, Eds. Springer Netherlands, 2017, pp. 719–735. doi:
10.1007/978-94-024-0881-2_26.

X. Han, T. Lv, Z. Hu, X. Wang, and C. Wang, “Text Summarization Using FrameNet-

Based Semantic Graph Model,” Scientific Programming, vol. 2016, pp. 1–10, Jan. 2016,
doi: 10.1155/2016/5130603.

https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html#d4e948
https://persistence.uni-leipzig.org/nlp2rdf/ontologies/nif-core/nif-core.html#d4e948
https://www.w3.org/2005/11/its/rdf-content/its-rdf.html
https://www.w3.org/2005/11/its/rdf-content/its-rdf.html
https://www.w3.org/2005/11/its/rdf-content/its-rdf.html
https://www.w3.org/2005/11/its/rdf-content/its-rdf.html
https://www.w3.org/TR/its20/
https://www.w3.org/TR/its20/
https://www.w3.org/TR/its20/
https://www.w3.org/TR/its20/
https://jupyter.org/
https://jupyter.org/
https://hackmd.procore.com/
https://hackmd.procore.com/
https://obsidian.md/
https://obsidian.md/
https://www.mediawiki.org/wiki/MediaWiki
https://www.mediawiki.org/wiki/MediaWiki
https://www.crummy.com/software/BeautifulSoup/#Download
https://www.crummy.com/software/BeautifulSoup/#Download
https://www.w3.org/TR/sparql11-results-json/#select-encode-terms
https://www.w3.org/TR/sparql11-results-json/#select-encode-terms
https://www.w3.org/TR/sparql11-results-json/#select-encode-terms
https://www.w3.org/TR/sparql11-results-json/#select-encode-terms
https://jsonapi.org/
https://jsonapi.org/
https://jsonapi.org/
https://jsonapi.org/
https://github.com/mu-semtech/mu-python-template
https://github.com/mu-semtech/mu-python-template
https://www.nltk.org/
https://www.nltk.org/
https://stanfordnlp.github.io/CoreNLP/
https://stanfordnlp.github.io/CoreNLP/
https://datatracker.ietf.org/doc/draft-ietf-oauth-dpop
https://datatracker.ietf.org/doc/draft-ietf-oauth-dpop
https://dotenv.org/
https://dotenv.org/
https://repository.upenn.edu/dissertations/AAI3179808
https://repository.upenn.edu/dissertations/AAI3179808

